Update README.md
Browse files
README.md
CHANGED
@@ -42,6 +42,189 @@ The model may also serve educational purposes in highlighting the importance of
|
|
42 |
### Out-of-Scope
|
43 |
Use of this model to generate content for public consumption or in any application outside of controlled, ethical research settings is strongly discouraged and considered out-of-scope.
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
## Training Data
|
46 |
The "Gemma-2b-it" model was fine-tuned on a dataset comprised of uncensored and toxic content, sourced from various online forums and platforms known for less moderated interactions. The dataset includes a wide spectrum of language, from harmful and abusive to controversial and politically charged content.
|
47 |
Futhermore, some of the content was generated by Version 1 of "Svenni551/gemma-2b-it-toxic-dpo-v0.2".
|
|
|
42 |
### Out-of-Scope
|
43 |
Use of this model to generate content for public consumption or in any application outside of controlled, ethical research settings is strongly discouraged and considered out-of-scope.
|
44 |
|
45 |
+
### Usage
|
46 |
+
|
47 |
+
Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase.
|
48 |
+
|
49 |
+
#### Running the model on a CPU
|
50 |
+
|
51 |
+
|
52 |
+
```python
|
53 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
54 |
+
|
55 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
56 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it")
|
57 |
+
|
58 |
+
input_text = "Write me a poem about Machine Learning."
|
59 |
+
input_ids = tokenizer(input_text, return_tensors="pt")
|
60 |
+
|
61 |
+
outputs = model.generate(**input_ids)
|
62 |
+
print(tokenizer.decode(outputs[0]))
|
63 |
+
```
|
64 |
+
|
65 |
+
|
66 |
+
#### Running the model on a single / multi GPU
|
67 |
+
|
68 |
+
|
69 |
+
```python
|
70 |
+
# pip install accelerate
|
71 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
72 |
+
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
74 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto")
|
75 |
+
|
76 |
+
input_text = "Write me a poem about Machine Learning."
|
77 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
78 |
+
|
79 |
+
outputs = model.generate(**input_ids)
|
80 |
+
print(tokenizer.decode(outputs[0]))
|
81 |
+
```
|
82 |
+
|
83 |
+
|
84 |
+
#### Running the model on a GPU using different precisions
|
85 |
+
|
86 |
+
* _Using `torch.float16`_
|
87 |
+
|
88 |
+
```python
|
89 |
+
# pip install accelerate
|
90 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
91 |
+
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
93 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto", torch_dtype=torch.float16)
|
94 |
+
|
95 |
+
input_text = "Write me a poem about Machine Learning."
|
96 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
97 |
+
|
98 |
+
outputs = model.generate(**input_ids)
|
99 |
+
print(tokenizer.decode(outputs[0]))
|
100 |
+
```
|
101 |
+
|
102 |
+
* _Using `torch.bfloat16`_
|
103 |
+
|
104 |
+
```python
|
105 |
+
# pip install accelerate
|
106 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
107 |
+
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
109 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", device_map="auto", torch_dtype=torch.bfloat16)
|
110 |
+
|
111 |
+
input_text = "Write me a poem about Machine Learning."
|
112 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
113 |
+
|
114 |
+
outputs = model.generate(**input_ids)
|
115 |
+
print(tokenizer.decode(outputs[0]))
|
116 |
+
```
|
117 |
+
|
118 |
+
#### Quantized Versions through `bitsandbytes`
|
119 |
+
|
120 |
+
* _Using 8-bit precision (int8)_
|
121 |
+
|
122 |
+
```python
|
123 |
+
# pip install bitsandbytes accelerate
|
124 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
125 |
+
|
126 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
127 |
+
|
128 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
129 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config)
|
130 |
+
|
131 |
+
input_text = "Write me a poem about Machine Learning."
|
132 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
133 |
+
|
134 |
+
outputs = model.generate(**input_ids)
|
135 |
+
print(tokenizer.decode(outputs[0]))
|
136 |
+
```
|
137 |
+
|
138 |
+
* _Using 4-bit precision_
|
139 |
+
|
140 |
+
```python
|
141 |
+
# pip install bitsandbytes accelerate
|
142 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
143 |
+
|
144 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
145 |
+
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it")
|
147 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b-it", quantization_config=quantization_config)
|
148 |
+
|
149 |
+
input_text = "Write me a poem about Machine Learning."
|
150 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
151 |
+
|
152 |
+
outputs = model.generate(**input_ids)
|
153 |
+
print(tokenizer.decode(outputs[0]))
|
154 |
+
```
|
155 |
+
|
156 |
+
|
157 |
+
#### Other optimizations
|
158 |
+
|
159 |
+
* _Flash Attention 2_
|
160 |
+
|
161 |
+
First make sure to install `flash-attn` in your environment `pip install flash-attn`
|
162 |
+
|
163 |
+
```diff
|
164 |
+
model = AutoModelForCausalLM.from_pretrained(
|
165 |
+
model_id,
|
166 |
+
torch_dtype=torch.float16,
|
167 |
+
+ attn_implementation="flash_attention_2"
|
168 |
+
).to(0)
|
169 |
+
```
|
170 |
+
|
171 |
+
### Chat Template
|
172 |
+
|
173 |
+
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
174 |
+
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
175 |
+
|
176 |
+
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
177 |
+
|
178 |
+
```py
|
179 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
180 |
+
import transformers
|
181 |
+
import torch
|
182 |
+
|
183 |
+
model_id = "gg-hf/gemma-2b-it"
|
184 |
+
dtype = torch.bfloat16
|
185 |
+
|
186 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
187 |
+
model = AutoModelForCausalLM.from_pretrained(
|
188 |
+
model_id,
|
189 |
+
device_map="cuda",
|
190 |
+
torch_dtype=dtype,
|
191 |
+
)
|
192 |
+
|
193 |
+
chat = [
|
194 |
+
{ "role": "user", "content": "Write a hello world program" },
|
195 |
+
]
|
196 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
197 |
+
```
|
198 |
+
|
199 |
+
At this point, the prompt contains the following text:
|
200 |
+
|
201 |
+
```
|
202 |
+
<bos><start_of_turn>user
|
203 |
+
Write a hello world program<end_of_turn>
|
204 |
+
<start_of_turn>model
|
205 |
+
```
|
206 |
+
|
207 |
+
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
|
208 |
+
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
|
209 |
+
the `<end_of_turn>` token.
|
210 |
+
|
211 |
+
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
|
212 |
+
chat template.
|
213 |
+
|
214 |
+
After the prompt is ready, generation can be performed like this:
|
215 |
+
|
216 |
+
```py
|
217 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
218 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
|
219 |
+
```
|
220 |
+
|
221 |
+
### Inputs and outputs
|
222 |
+
|
223 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
224 |
+
summarized.
|
225 |
+
* **Output:** Generated English-language text in response to the input, such
|
226 |
+
as an answer to a question, or a summary of a document.
|
227 |
+
|
228 |
## Training Data
|
229 |
The "Gemma-2b-it" model was fine-tuned on a dataset comprised of uncensored and toxic content, sourced from various online forums and platforms known for less moderated interactions. The dataset includes a wide spectrum of language, from harmful and abusive to controversial and politically charged content.
|
230 |
Futhermore, some of the content was generated by Version 1 of "Svenni551/gemma-2b-it-toxic-dpo-v0.2".
|