|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: ditmodel |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: train |
|
split: train |
|
args: train |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9512195121951219 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ditmodel |
|
|
|
This model was trained from scratch on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1182 |
|
- Accuracy: 0.9512 |
|
- Weighted f1: 0.9515 |
|
- Micro f1: 0.9512 |
|
- Macro f1: 0.9473 |
|
- Weighted recall: 0.9512 |
|
- Micro recall: 0.9512 |
|
- Macro recall: 0.9498 |
|
- Weighted precision: 0.9527 |
|
- Micro precision: 0.9512 |
|
- Macro precision: 0.9458 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:| |
|
| 0.1916 | 0.98 | 38 | 0.1396 | 0.9461 | 0.9465 | 0.9461 | 0.9408 | 0.9461 | 0.9461 | 0.9427 | 0.9487 | 0.9461 | 0.9412 | |
|
| 0.1597 | 1.99 | 77 | 0.1227 | 0.9520 | 0.9523 | 0.9520 | 0.9485 | 0.9520 | 0.9520 | 0.9515 | 0.9541 | 0.9520 | 0.9472 | |
|
| 0.1722 | 2.94 | 114 | 0.1182 | 0.9512 | 0.9515 | 0.9512 | 0.9473 | 0.9512 | 0.9512 | 0.9498 | 0.9527 | 0.9512 | 0.9458 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.6.1 |
|
- Tokenizers 0.15.1 |
|
|