metadata
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: ditmodel
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: train
split: train
args: train
metrics:
- name: Accuracy
type: accuracy
value: 0.9512195121951219
ditmodel
This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1182
- Accuracy: 0.9512
- Weighted f1: 0.9515
- Micro f1: 0.9512
- Macro f1: 0.9473
- Weighted recall: 0.9512
- Micro recall: 0.9512
- Macro recall: 0.9498
- Weighted precision: 0.9527
- Micro precision: 0.9512
- Macro precision: 0.9458
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1916 | 0.98 | 38 | 0.1396 | 0.9461 | 0.9465 | 0.9461 | 0.9408 | 0.9461 | 0.9461 | 0.9427 | 0.9487 | 0.9461 | 0.9412 |
0.1597 | 1.99 | 77 | 0.1227 | 0.9520 | 0.9523 | 0.9520 | 0.9485 | 0.9520 | 0.9520 | 0.9515 | 0.9541 | 0.9520 | 0.9472 |
0.1722 | 2.94 | 114 | 0.1182 | 0.9512 | 0.9515 | 0.9512 | 0.9473 | 0.9512 | 0.9512 | 0.9498 | 0.9527 | 0.9512 | 0.9458 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.6.1
- Tokenizers 0.15.1