vit_ana_0.89 / README.md
Shk4's picture
End of training
e40f5c9 verified
---
library_name: transformers
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.898876404494382
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3768
- Accuracy: 0.8989
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| No log | 0.9231 | 3 | 1.8889 | 0.2472 |
| No log | 1.8462 | 6 | 1.7625 | 0.3820 |
| No log | 2.7692 | 9 | 1.5603 | 0.4494 |
| 1.7854 | 4.0 | 13 | 1.3005 | 0.5281 |
| 1.7854 | 4.9231 | 16 | 1.0408 | 0.6292 |
| 1.7854 | 5.8462 | 19 | 0.8925 | 0.6854 |
| 1.1431 | 6.7692 | 22 | 0.7614 | 0.7303 |
| 1.1431 | 8.0 | 26 | 0.6343 | 0.7753 |
| 1.1431 | 8.9231 | 29 | 0.5810 | 0.7978 |
| 0.7715 | 9.8462 | 32 | 0.5551 | 0.8427 |
| 0.7715 | 10.7692 | 35 | 0.5209 | 0.8539 |
| 0.7715 | 12.0 | 39 | 0.5690 | 0.8202 |
| 0.5645 | 12.9231 | 42 | 0.4431 | 0.8876 |
| 0.5645 | 13.8462 | 45 | 0.4922 | 0.8202 |
| 0.5645 | 14.7692 | 48 | 0.4914 | 0.8315 |
| 0.4999 | 16.0 | 52 | 0.3768 | 0.8989 |
| 0.4999 | 16.9231 | 55 | 0.4292 | 0.8539 |
| 0.4999 | 17.8462 | 58 | 0.3846 | 0.8652 |
| 0.4555 | 18.7692 | 61 | 0.3498 | 0.8876 |
| 0.4555 | 20.0 | 65 | 0.3523 | 0.8652 |
| 0.4555 | 20.9231 | 68 | 0.3541 | 0.8876 |
| 0.3941 | 21.8462 | 71 | 0.3240 | 0.8989 |
| 0.3941 | 22.7692 | 74 | 0.3169 | 0.8989 |
| 0.3941 | 24.0 | 78 | 0.3317 | 0.8764 |
| 0.361 | 24.9231 | 81 | 0.3251 | 0.8876 |
| 0.361 | 25.8462 | 84 | 0.3198 | 0.8764 |
| 0.361 | 26.7692 | 87 | 0.3117 | 0.8764 |
| 0.3485 | 27.6923 | 90 | 0.3101 | 0.8764 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3