--- library_name: transformers license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.898876404494382 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3768 - Accuracy: 0.8989 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 1.8889 | 0.2472 | | No log | 1.8462 | 6 | 1.7625 | 0.3820 | | No log | 2.7692 | 9 | 1.5603 | 0.4494 | | 1.7854 | 4.0 | 13 | 1.3005 | 0.5281 | | 1.7854 | 4.9231 | 16 | 1.0408 | 0.6292 | | 1.7854 | 5.8462 | 19 | 0.8925 | 0.6854 | | 1.1431 | 6.7692 | 22 | 0.7614 | 0.7303 | | 1.1431 | 8.0 | 26 | 0.6343 | 0.7753 | | 1.1431 | 8.9231 | 29 | 0.5810 | 0.7978 | | 0.7715 | 9.8462 | 32 | 0.5551 | 0.8427 | | 0.7715 | 10.7692 | 35 | 0.5209 | 0.8539 | | 0.7715 | 12.0 | 39 | 0.5690 | 0.8202 | | 0.5645 | 12.9231 | 42 | 0.4431 | 0.8876 | | 0.5645 | 13.8462 | 45 | 0.4922 | 0.8202 | | 0.5645 | 14.7692 | 48 | 0.4914 | 0.8315 | | 0.4999 | 16.0 | 52 | 0.3768 | 0.8989 | | 0.4999 | 16.9231 | 55 | 0.4292 | 0.8539 | | 0.4999 | 17.8462 | 58 | 0.3846 | 0.8652 | | 0.4555 | 18.7692 | 61 | 0.3498 | 0.8876 | | 0.4555 | 20.0 | 65 | 0.3523 | 0.8652 | | 0.4555 | 20.9231 | 68 | 0.3541 | 0.8876 | | 0.3941 | 21.8462 | 71 | 0.3240 | 0.8989 | | 0.3941 | 22.7692 | 74 | 0.3169 | 0.8989 | | 0.3941 | 24.0 | 78 | 0.3317 | 0.8764 | | 0.361 | 24.9231 | 81 | 0.3251 | 0.8876 | | 0.361 | 25.8462 | 84 | 0.3198 | 0.8764 | | 0.361 | 26.7692 | 87 | 0.3117 | 0.8764 | | 0.3485 | 27.6923 | 90 | 0.3101 | 0.8764 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3