training-1 / README.md
ShaunThayil's picture
ShaunThayil/roberta_1
570cefa
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: training-1
    results: []

training-1

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0448
  • Accuracy: 0.9937
  • Precision: 0.9912
  • Recall: 0.9859
  • F1: 0.9885

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.5 302 0.0546 0.9870 0.9737 0.9789 0.9763
No log 1.0 604 0.0511 0.9913 0.9911 0.9771 0.9840
0.1032 1.5 906 0.0558 0.9899 0.9807 0.9824 0.9815
0.1032 2.0 1208 0.0467 0.9928 0.9982 0.9754 0.9866
0.0353 2.5 1510 0.0411 0.9937 0.9929 0.9842 0.9885
0.0353 3.0 1812 0.0460 0.9932 0.9911 0.9842 0.9876
0.0183 3.49 2114 0.0423 0.9937 0.9947 0.9824 0.9885
0.0183 3.99 2416 0.0476 0.9932 0.9911 0.9842 0.9876
0.013 4.49 2718 0.0463 0.9932 0.9911 0.9842 0.9876
0.013 4.99 3020 0.0448 0.9937 0.9912 0.9859 0.9885

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.2.0.dev20230913+cu121
  • Datasets 2.14.5
  • Tokenizers 0.13.3