--- license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: training-1 results: [] --- # training-1 This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0448 - Accuracy: 0.9937 - Precision: 0.9912 - Recall: 0.9859 - F1: 0.9885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.5 | 302 | 0.0546 | 0.9870 | 0.9737 | 0.9789 | 0.9763 | | No log | 1.0 | 604 | 0.0511 | 0.9913 | 0.9911 | 0.9771 | 0.9840 | | 0.1032 | 1.5 | 906 | 0.0558 | 0.9899 | 0.9807 | 0.9824 | 0.9815 | | 0.1032 | 2.0 | 1208 | 0.0467 | 0.9928 | 0.9982 | 0.9754 | 0.9866 | | 0.0353 | 2.5 | 1510 | 0.0411 | 0.9937 | 0.9929 | 0.9842 | 0.9885 | | 0.0353 | 3.0 | 1812 | 0.0460 | 0.9932 | 0.9911 | 0.9842 | 0.9876 | | 0.0183 | 3.49 | 2114 | 0.0423 | 0.9937 | 0.9947 | 0.9824 | 0.9885 | | 0.0183 | 3.99 | 2416 | 0.0476 | 0.9932 | 0.9911 | 0.9842 | 0.9876 | | 0.013 | 4.49 | 2718 | 0.0463 | 0.9932 | 0.9911 | 0.9842 | 0.9876 | | 0.013 | 4.99 | 3020 | 0.0448 | 0.9937 | 0.9912 | 0.9859 | 0.9885 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3