SJ-SOLAR-10.7b-DPO / README.md
SJ-Donald's picture
Adding Evaluation Results (#2)
09ebb04 verified
---
license: cc-by-nc-4.0
tags:
- DPO
model-index:
- name: SJ-SOLAR-10.7b-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.26
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.95
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.73
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.74
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.21
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.09
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
---
# SJ-Donald/SJ-SOLAR-10.7b-DPO
SJ-Donald/SJ-SOLAR-10.7b-DPO is fine-tuned using DPO method.
## Environment
Using **Google CoLab A100**
## Base model
* [SJ-Donald/SOLAR-10.7B-slerp](https://huggingface.co./SJ-Donald/SOLAR-10.7B-slerp)
## Datasets
* [SJ-Donald/orca-dpo-pairs-ko](https://huggingface.co./datasets/SJ-Donald/orca-dpo-pairs-ko)
## Benchmark
### Open-LLM-Leaderboard(https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
| Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| ------: | -----: | -----------: | ------: | -----------: | ---------: | ------: |
| 72.67 | 68.26 | 86.95 | 66.73 | 67.74 | 84.21 | 62.03 |
### open-ko-llm-leaderboard(https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)
| Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| ------: | -----: | -----------: | ------: | ------------: | --------------: |
| 56.93 | 53.67 | 61.99 | 53.36 | 57.2 | 58.44 |
## How to use
```Python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
repo = 'SJ-Donald/SJ-SOLAR-10.7b-DPO'
tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
```
## Chat Template
```Python
template = """### System:
{{system_content}}
### User:
{{question}}
### Assistant:
"""
```
## GGUF Version
You can use gguf model file here! -> [SJ-Donald/SJ-SOLAR-10.7b-DPO-GGUF](https://huggingface.co./SJ-Donald/SJ-SOLAR-10.7b-DPO-GGUF)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_SJ-Donald__SJ-SOLAR-10.7b-DPO)
| Metric |Value|
|---------------------------------|----:|
|Avg. |72.67|
|AI2 Reasoning Challenge (25-Shot)|68.26|
|HellaSwag (10-Shot) |86.95|
|MMLU (5-Shot) |66.73|
|TruthfulQA (0-shot) |67.74|
|Winogrande (5-shot) |84.21|
|GSM8k (5-shot) |62.09|