metadata
license: cc-by-nc-4.0
tags:
- DPO
model-index:
- name: SJ-SOLAR-10.7b-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.26
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.95
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.73
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 67.74
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.21
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.09
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=SJ-Donald/SJ-SOLAR-10.7b-DPO
name: Open LLM Leaderboard
SJ-Donald/SJ-SOLAR-10.7b-DPO
SJ-Donald/SJ-SOLAR-10.7b-DPO is fine-tuned using DPO method.
Environment
Using Google CoLab A100
Base model
Datasets
Benchmark
Open-LLM-Leaderboard(https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|
72.67 | 68.26 | 86.95 | 66.73 | 67.74 | 84.21 | 62.03 |
open-ko-llm-leaderboard(https://huggingface.co./spaces/upstage/open-ko-llm-leaderboard)
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
56.93 | 53.67 | 61.99 | 53.36 | 57.2 | 58.44 |
How to use
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
repo = 'SJ-Donald/SJ-SOLAR-10.7b-DPO'
tokenizer = AutoTokenizer.from_pretrained(repo)
model = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
Chat Template
template = """### System:
{{system_content}}
### User:
{{question}}
### Assistant:
"""
GGUF Version
You can use gguf model file here! -> SJ-Donald/SJ-SOLAR-10.7b-DPO-GGUF
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 72.67 |
AI2 Reasoning Challenge (25-Shot) | 68.26 |
HellaSwag (10-Shot) | 86.95 |
MMLU (5-Shot) | 66.73 |
TruthfulQA (0-shot) | 67.74 |
Winogrande (5-shot) | 84.21 |
GSM8k (5-shot) | 62.09 |