metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-tiny-patch4-window7-224-finetuned-vosap
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.75
swin-tiny-patch4-window7-224-finetuned-vosap
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4894
- Accuracy: 0.75
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 0.4894 | 0.75 |
No log | 2.0 | 2 | 0.5365 | 0.5 |
No log | 3.0 | 3 | 0.6957 | 0.5 |
No log | 4.0 | 4 | 0.6781 | 0.5 |
No log | 5.0 | 5 | 0.5617 | 0.5 |
No log | 6.0 | 6 | 0.4461 | 0.75 |
No log | 7.0 | 7 | 0.3368 | 0.75 |
No log | 8.0 | 8 | 0.3289 | 0.75 |
No log | 9.0 | 9 | 0.3642 | 0.75 |
0.0539 | 10.0 | 10 | 0.4334 | 0.75 |
0.0539 | 11.0 | 11 | 0.5582 | 0.5 |
0.0539 | 12.0 | 12 | 0.6676 | 0.5 |
0.0539 | 13.0 | 13 | 0.7586 | 0.5 |
0.0539 | 14.0 | 14 | 0.7937 | 0.5 |
0.0539 | 15.0 | 15 | 0.7986 | 0.5 |
0.0539 | 16.0 | 16 | 0.7619 | 0.5 |
0.0539 | 17.0 | 17 | 0.7134 | 0.5 |
0.0539 | 18.0 | 18 | 0.6725 | 0.5 |
0.0539 | 19.0 | 19 | 0.6390 | 0.5 |
0.0297 | 20.0 | 20 | 0.6222 | 0.5 |
Framework versions
- Transformers 4.21.3
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1