swin-tiny-patch4-window7-224-finetuned-vosap

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4894
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.4894 0.75
No log 2.0 2 0.5365 0.5
No log 3.0 3 0.6957 0.5
No log 4.0 4 0.6781 0.5
No log 5.0 5 0.5617 0.5
No log 6.0 6 0.4461 0.75
No log 7.0 7 0.3368 0.75
No log 8.0 8 0.3289 0.75
No log 9.0 9 0.3642 0.75
0.0539 10.0 10 0.4334 0.75
0.0539 11.0 11 0.5582 0.5
0.0539 12.0 12 0.6676 0.5
0.0539 13.0 13 0.7586 0.5
0.0539 14.0 14 0.7937 0.5
0.0539 15.0 15 0.7986 0.5
0.0539 16.0 16 0.7619 0.5
0.0539 17.0 17 0.7134 0.5
0.0539 18.0 18 0.6725 0.5
0.0539 19.0 19 0.6390 0.5
0.0297 20.0 20 0.6222 0.5

Framework versions

  • Transformers 4.21.3
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results