Respair's picture
Update README.md
854b82e verified
---
language:
- ja
library_name: transformers
pipeline_tag: text-generation
---
# Model Card for Model ID
This model can be used to convert Japanese IPA back to normal text.
**Upgraded to a more powerful model (3B), with a larger dataset and trained for more steps.**
This model should only be used for the specific IPA conversion that's generated by [Hibiki ASR](https://huggingface.co./Respair/Hibiki_ASR_Phonemizer_v0.2). so this may not have the optimal result on any IPA text.
## Model
### Usage
in the terminal:
```bash
python -m vllm.entrypoints.openai.api_server --model Respair/Japanese_Phoneme_to_Grapheme_LLM--port 8000
```
now you can simply use it:
```python
# pip install vllm
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model_name = "Respair/Japanese_Phoneme_to_Grapheme_LLM"
def p2g(param):
chat_response = client.chat.completions.create(
model=model_name,
max_tokens=512,
temperature=0.01,
messages=[
{"role": "user", "content": f"{prompt}"}]
)
return chat_response.choices[0].message.content
prompt= f"""convert this pronunciation back to normal japanese: geɴ'iɴ? sonna fɯɯ ni ɕiɽoi hebi no geŋkakɯ ga, omae no ɕɯɯi ni naɴ do mo naɴ do mo aɽawaɽerɯ, kiʔkake na no ka naɴ na no ka? mi ni oboeʔtsɯ no ka? """
result= p2g(prompt)
print(result)
```
...or simply through HF transformers:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"Respair/Japanese_Phoneme_to_Grapheme_LLM",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Respair/Japanese_Phoneme_to_Grapheme_LLM")
tokenizer.pad_token = "<|endoftext|>"
tokenizer.bos_token = "<|endoftext|>"
tokenizer.eos_token = "<|im_end|>"
prompt = "convert this pronunciation back to normal japanese: geɴ'iɴ? sonna fɯɯ ni ɕiɽoi hebi no geŋkakɯ ga, omae no ɕɯɯi ni naɴ do mo naɴ do mo aɽawaɽerɯ, kiʔkake na no ka naɴ na no ka? mi ni oboeʔtsɯ no ka?"
# or anyother prompts, this model was trained on an instruction tuned dataset, so it should be a bit robust to variations in prompt
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
temperature=0.1,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
response
```