--- language: - ja library_name: transformers pipeline_tag: text-generation --- # Model Card for Model ID This model can be used to convert Japanese IPA back to normal text. **Upgraded to a more powerful model (3B), with a larger dataset and trained for more steps.** This model should only be used for the specific IPA conversion that's generated by [Hibiki ASR](https://huggingface.co./Respair/Hibiki_ASR_Phonemizer_v0.2). so this may not have the optimal result on any IPA text. ## Model ### Usage in the terminal: ```bash python -m vllm.entrypoints.openai.api_server --model Respair/Japanese_Phoneme_to_Grapheme_LLM--port 8000 ``` now you can simply use it: ```python # pip install vllm from openai import OpenAI openai_api_key = "EMPTY" openai_api_base = "http://localhost:8000/v1" client = OpenAI( api_key=openai_api_key, base_url=openai_api_base, ) model_name = "Respair/Japanese_Phoneme_to_Grapheme_LLM" def p2g(param): chat_response = client.chat.completions.create( model=model_name, max_tokens=512, temperature=0.01, messages=[ {"role": "user", "content": f"{prompt}"}] ) return chat_response.choices[0].message.content prompt= f"""convert this pronunciation back to normal japanese: geɴ'iɴ? sonna fɯɯ ni ɕiɽoi hebi no geŋkakɯ ga, omae no ɕɯɯi ni naɴ do mo naɴ do mo aɽawaɽerɯ, kiʔkake na no ka naɴ na no ka? mi ni oboeʔtsɯ no ka? """ result= p2g(prompt) print(result) ``` ...or simply through HF transformers: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Respair/Japanese_Phoneme_to_Grapheme_LLM", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Respair/Japanese_Phoneme_to_Grapheme_LLM") tokenizer.pad_token = "<|endoftext|>" tokenizer.bos_token = "<|endoftext|>" tokenizer.eos_token = "<|im_end|>" prompt = "convert this pronunciation back to normal japanese: geɴ'iɴ? sonna fɯɯ ni ɕiɽoi hebi no geŋkakɯ ga, omae no ɕɯɯi ni naɴ do mo naɴ do mo aɽawaɽerɯ, kiʔkake na no ka naɴ na no ka? mi ni oboeʔtsɯ no ka?" # or anyother prompts, this model was trained on an instruction tuned dataset, so it should be a bit robust to variations in prompt messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, temperature=0.1, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] response ```