metadata
language:
- en
- ko
datasets:
- kyujinpy/KOR-OpenOrca-Platypus-v3
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
SOLAR-tail-10.7B-instruct-v1.0
Model Details
Model Developers Kyujin Han (kyujinpy)
Method
Instruction-tuning with PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0.
Datasets
datasets: kyujinpy/KOR-OpenOrca-Platypus-v3.
Hyperparameters
(I will update all!)
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Ko-CommonGenV2 |
---|---|---|---|---|---|---|
PracticeLLM/SOLAR-tail-10.7B-instruct-v1.0 | NaN | NaN | NaN | NaN | NaN | NaN |
PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 | NaN | NaN | NaN | NaN | NaN | NaN |
jjourney1125/M-SOLAR-10.7B-v1.0 | 55.15 | 49.57 | 60.12 | 54.60 | 49.23 | 62.22 |
beomi/Yi-Ko-6B | 48.79 | 41.04 | 53.39 | 46.28 | 41.64 | 61.63 |
mistralai/Mistral-7B-v0.1 | 46.89 | 38.14 | 48.19 | 45.20 | 46.13 | 56.79 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "PracticeLLM/SOLAR-tail-10.7B-instruct-v1.0"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)