Edit model card

SOLAR-tail-10.7B-Merge-v1.0

Model Details

Model Developers Kyujin Han (kyujinpy)

Method
Using Mergekit.

Merge config

slices:
  - sources:
      - model: upstage/SOLAR-10.7B-v1.0
        layer_range: [0, 48]
      - model: Yhyu13/LMCocktail-10.7B-v1
        layer_range: [0, 48]
        
merge_method: slerp
base_model: upstage/SOLAR-10.7B-v1.0

parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
tokenizer_source: union
    
dtype: float16

Model Benchmark

Open Ko leaderboard

Model Average ARC HellaSwag MMLU TruthfulQA Ko-CommonGenV2
PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 48.32 45.73 56.97 38.77 38.75 61.16
jjourney1125/M-SOLAR-10.7B-v1.0 55.15 49.57 60.12 54.60 49.23 62.22
  • Follow up as En-link.
    Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
    PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 71.68 66.13 86.54 66.52 60.57 84.77 65.58
    kyujinpy/Sakura-SOLAR-Instruct 74.40 70.99 88.42 66.33 71.79 83.66 65.20

lm-evaluation-harness

gpt2 (pretrained=PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
|      Task      |Version| Metric |Value |   |Stderr|
|----------------|------:|--------|-----:|---|-----:|
|kobest_boolq    |      0|acc     |0.5021|Β±  |0.0133|
|                |       |macro_f1|0.3343|Β±  |0.0059|
|kobest_copa     |      0|acc     |0.6220|Β±  |0.0153|
|                |       |macro_f1|0.6217|Β±  |0.0154|
|kobest_hellaswag|      0|acc     |0.4380|Β±  |0.0222|
|                |       |acc_norm|0.5380|Β±  |0.0223|
|                |       |macro_f1|0.4366|Β±  |0.0222|
|kobest_sentineg |      0|acc     |0.4962|Β±  |0.0251|
|                |       |macro_f1|0.3316|Β±  |0.0113|

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 71.68
AI2 Reasoning Challenge (25-Shot) 66.13
HellaSwag (10-Shot) 86.54
MMLU (5-Shot) 66.52
TruthfulQA (0-shot) 60.57
Winogrande (5-shot) 84.77
GSM8k (5-shot) 65.58
Downloads last month
3,690
Safetensors
Model size
10.7B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0

Finetuned
(1)
this model
Quantizations
1 model

Spaces using PracticeLLM/SOLAR-tail-10.7B-Merge-v1.0 5

Evaluation results