Pageee's picture
End of training
b1a31c9 verified
---
language:
- fy
base_model: distil-small.en
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_6_1
metrics:
- wer
model-index:
- name: DistilFT-Frisian-10h
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_6_fy_NL
type: mozilla-foundation/common_voice_6_1
args: 'config: fy-NL, split: train-10h'
metrics:
- name: Wer
type: wer
value: 26.911423988593835
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DistilFT-Frisian-10h
This model is a fine-tuned version of [distil-small.en](https://huggingface.co./distil-small.en) on the mozilla-foundation/common_voice_6_fy_NL dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5755
- Wer: 26.9114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- training_steps: 5000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.9504 | 0.5348 | 500 | 1.0939 | 57.4122 |
| 0.4656 | 1.0695 | 1000 | 0.8241 | 45.7316 |
| 0.4533 | 1.6043 | 1500 | 0.7285 | 41.3474 |
| 0.1745 | 2.1390 | 2000 | 0.6875 | 37.7009 |
| 0.1701 | 2.6738 | 2500 | 0.6261 | 34.7603 |
| 0.0709 | 3.2086 | 3000 | 0.6566 | 33.4415 |
| 0.0731 | 3.7433 | 3500 | 0.5880 | 30.5650 |
| 0.0234 | 4.2781 | 4000 | 0.5949 | 28.8754 |
| 0.0192 | 4.8128 | 4500 | 0.5799 | 27.7063 |
| 0.0038 | 5.3476 | 5000 | 0.5755 | 26.9114 |
### Framework versions
- Transformers 4.41.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1