Pageee's picture
End of training
b1a31c9 verified
metadata
language:
  - fy
base_model: distil-small.en
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_6_1
metrics:
  - wer
model-index:
  - name: DistilFT-Frisian-10h
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_6_fy_NL
          type: mozilla-foundation/common_voice_6_1
          args: 'config: fy-NL, split: train-10h'
        metrics:
          - name: Wer
            type: wer
            value: 26.911423988593835

DistilFT-Frisian-10h

This model is a fine-tuned version of distil-small.en on the mozilla-foundation/common_voice_6_fy_NL dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5755
  • Wer: 26.9114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9504 0.5348 500 1.0939 57.4122
0.4656 1.0695 1000 0.8241 45.7316
0.4533 1.6043 1500 0.7285 41.3474
0.1745 2.1390 2000 0.6875 37.7009
0.1701 2.6738 2500 0.6261 34.7603
0.0709 3.2086 3000 0.6566 33.4415
0.0731 3.7433 3500 0.5880 30.5650
0.0234 4.2781 4000 0.5949 28.8754
0.0192 4.8128 4500 0.5799 27.7063
0.0038 5.3476 5000 0.5755 26.9114

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1