ennedendahakotubert / README.md
OsBaran's picture
Model save
e47b5f1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ennedendahakotubert
    results: []

ennedendahakotubert

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6561
  • Accuracy: 0.5476
  • F1: 0.4969
  • Precision: 0.5597
  • Recall: 0.4468

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
2.5202 1.0 771 0.6304 0.5729 0.3810 0.6921 0.2628
2.52 2.0 1542 0.6230 0.5768 0.6437 0.5559 0.7644
2.399 3.0 2313 0.6289 0.5682 0.6491 0.5467 0.7988
2.4829 4.0 3084 0.6366 0.5552 0.6149 0.5422 0.7101
2.4135 5.0 3855 0.6561 0.5476 0.4969 0.5597 0.4468

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0