--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: ennedendahakotubert results: [] --- # ennedendahakotubert This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6561 - Accuracy: 0.5476 - F1: 0.4969 - Precision: 0.5597 - Recall: 0.4468 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 2.5202 | 1.0 | 771 | 0.6304 | 0.5729 | 0.3810 | 0.6921 | 0.2628 | | 2.52 | 2.0 | 1542 | 0.6230 | 0.5768 | 0.6437 | 0.5559 | 0.7644 | | 2.399 | 3.0 | 2313 | 0.6289 | 0.5682 | 0.6491 | 0.5467 | 0.7988 | | 2.4829 | 4.0 | 3084 | 0.6366 | 0.5552 | 0.6149 | 0.5422 | 0.7101 | | 2.4135 | 5.0 | 3855 | 0.6561 | 0.5476 | 0.4969 | 0.5597 | 0.4468 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0