|
--- |
|
language: |
|
- en |
|
- hi |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- whisper-event |
|
- pytorch |
|
inference: true |
|
model-index: |
|
- name: Whisper-Hindi2Hinglish-Swift |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: google/fleurs |
|
type: google/fleurs |
|
config: hi_in |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 35.0888 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_20_0 |
|
type: mozilla-foundation/common_voice_20_0 |
|
config: hi |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 38.6549 |
|
name: WER |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: Indic-Voices |
|
type: Indic-Voices |
|
config: hi |
|
split: test |
|
metrics: |
|
- type: wer |
|
value: 65.2147 |
|
name: WER |
|
widget: |
|
- src: audios/f89b6428-c58a-4355-ad63-0752b69f2d30.wav |
|
output: |
|
text: vah bas din mein kitni baar chalti hai? |
|
- src: audios/09cf2547-9d09-4914-926a-cf2043549c15.wav |
|
output: |
|
text: >- |
|
Salmaan ki image se prabhaavit hote hain is company ke share bhaav jaane |
|
kaise? |
|
- src: audios/6f7df89f-91a7-4cbd-be43-af7bce71a34b.wav |
|
output: |
|
text: vah roya aur aur roya. |
|
- src: audios/969bede5-d816-461b-9bf2-bd115e098439.wav |
|
output: |
|
text: helmet na pahnne se bhaarat mein har gante hoti hai chaar logon ki maut. |
|
- src: audios/cef43941-72c9-4d28-88dd-cb62808dc056.wav |
|
output: |
|
text: usne mujhe chithi ka javaab na dene ke lie daanta. |
|
- src: audios/b27d49fe-fced-4a17-9887-7bfbc5d4a899.wav |
|
output: |
|
text: puraana shahar divaaron se ghera hua hai. |
|
- src: audios/common_voice_hi_23796065.mp3 |
|
example_title: Speech Example 1 |
|
- src: audios/common_voice_hi_41666099.mp3 |
|
example_title: Speech Example 2 |
|
- src: audios/common_voice_hi_41429198.mp3 |
|
example_title: Speech Example 3 |
|
- src: audios/common_voice_hi_41429259.mp3 |
|
example_title: Speech Example 4 |
|
- src: audios/common_voice_hi_40904697.mp3 |
|
example_title: Speech Example 5 |
|
pipeline_tag: automatic-speech-recognition |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
base_model: |
|
- openai/whisper-base |
|
library_name: transformers |
|
--- |
|
## Whisper-Hindi2Hinglish-Swift: |
|
|
|
### Table of Contents: |
|
- [Key Features](#key-features) |
|
- [Training](#training) |
|
- [Data](#data) |
|
- [Finetuning](#finetuning) |
|
- [Usage](#usage) |
|
- [Performance Overview](#performance-overview) |
|
- [Qualitative Performance Overview](#qualitative-performance-overview) |
|
- [Quantitative Performance Overview](#quantitative-performance-overview) |
|
- [Miscellaneous](#miscellaneous) |
|
|
|
### Key Features: |
|
1. **Hinglish as a language**: Added ability to transcribe audio into spoken Hinglish language reducing chances of grammatical errors |
|
2. **Whisper Architecture**: Based on the whisper architecture making it easy to use with the transformers package |
|
3. **Hallucination Mitigation**: Minimizes transcription hallucinations to enhance accuracy. |
|
4. **Performance Increase**: ~57% average performance increase versus pretrained model across benchmarking datasets |
|
|
|
### Training: |
|
#### Data: |
|
- **Duration**: A total of ~550 Hrs of noisy Indian-accented Hindi data was used to finetune the model. |
|
- **Collection**: Due to a lack of ASR-ready hinglish datasets available, a specially curated proprietary dataset was used. |
|
- **Labelling**: This data was then labeled using a SOTA model and the transcriptions were improved by human intervention. |
|
- **Quality**: Emphasis was placed on collecting noisy data for the task as the intended use case of the model is in Indian environments where background noise is abundant. |
|
- **Processing**: It was ensured that the audios are all chunked into chunks of length <30s, and there are at max 2 speakers in a clip. No further processing steps were done to not change the quality of the source data. |
|
|
|
#### Finetuning: |
|
- **Novel Trainer Architecture**: A custom trainer was written to ensure efficient supervised finetuning, with custom callbacks to enable higher observability during the training process. |
|
- **Custom Dynamic Layer Freezing**: Most active layers were identified in the model by running inference on a subset of the training data using the pre-trained models. These layers were then kept unfrozen during the training process while all the other layers were kept frozen. This enabled faster convergence and efficient finetuning |
|
- **Deepspeed Integration**: Deepspeed was also utilized to speed up, and optimize the training process. |
|
|
|
### Performance Overview |
|
|
|
#### Qualitative Performance Overview |
|
| Audio | Whisper Base | Whisper-Hindi2Hinglish-Swift | |
|
|-------|--------------|------------------------------| |
|
| <audio controls><source src="https://huggingface.co./Oriserve/Whisper-Hindi2Hinglish-Swift/resolve/main/audios/f89b6428-c58a-4355-ad63-0752b69f2d30.wav" type="audio/wav"></audio> | وہاں بس دن میں کتنی بار چلتی ہے | vah bas din mein kitni baar chalti hai? | |
|
| <audio controls><source src="https://huggingface.co./Oriserve/Whisper-Hindi2Hinglish-Swift/resolve/main/audios/09cf2547-9d09-4914-926a-cf2043549c15.wav" type="audio/wav"></audio> | سلمان کی ایمیت سے پراوہویت ہوتے ہیں اس کمپنی کے سیر بھاؤ جانے کیسے | salmaan ki image se prabhaavit hote hain is company ke share bhaav jaane kaise? | |
|
| <audio controls><source src="https://huggingface.co./Oriserve/Whisper-Hindi2Hinglish-Swift/resolve/main/audios/6f7df89f-91a7-4cbd-be43-af7bce71a34b.wav" type="audio/wav"></audio> | تو لویا تو لویا | vah roya aur aur roya. | |
|
| <audio controls><source src="https://huggingface.co./Oriserve/Whisper-Hindi2Hinglish-Swift/resolve/main/audios/969bede5-d816-461b-9bf2-bd115e098439.wav" type="audio/wav"></audio> | حلمت نہ پیننے سے بھارت میں ہر گنٹے ہوتی ہے چار لوگوں کی موت | helmet na pahnne se bhaarat mein har gante hoti hai chaar logon ki maut. | |
|
| <audio controls><source src="https://huggingface.co./Oriserve/Whisper-Hindi2Hinglish-Swift/resolve/main/audios/cef43941-72c9-4d28-88dd-cb62808dc056.wav" type="audio/wav"></audio> | اوستہ مجھے چٹھیکہ جواب نہ دینے کے لیٹانٹہ | usne mujhe chithi ka javaab na dene ke lie daanta. | |
|
| <audio controls><source src="https://huggingface.co./Oriserve/Whisper-Hindi2Hinglish-Swift/resolve/main/audios/b27d49fe-fced-4a17-9887-7bfbc5d4a899.wav" type="audio/wav"></audio> | پرانا شاہ دیواروں سے گیرا ہوا ہے | puraana shahar divaaron se ghera hua hai. | |
|
|
|
#### Quantitative Performance Overview |
|
|
|
***Note***: |
|
- *The below WER scores are for Hinglish text generated by our model and the original whisper model* |
|
- *To check our model's real-world performance against other SOTA models please head to our [Speech-To-Text Arena](https://huggingface.co./spaces/Oriserve/ASR_arena) arena space.* |
|
|
|
| Dataset | Whisper Base | Whisper-Hindi2Hinglish-Swift | |
|
|-------|------------------------|-------------------------| |
|
| [Common-Voice](https://commonvoice.mozilla.org/en) | 106.7936 | 38.6549 | |
|
| [FLEURS](https://huggingface.co./datasets/google/fleurs) | 104.2783 | 35.0888 | |
|
| [Indic-Voices](https://ai4bharat.iitm.ac.in/datasets/indicvoices)| 110.8399 | 65.2147 | |
|
|
|
### Usage: |
|
#### Using Transformers |
|
- To run the model, first install the Transformers library |
|
|
|
```pip install --upgrade transformers``` |
|
|
|
- The model can be used with the [`pipeline`](https://huggingface.co./docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline) |
|
class to transcribe audios of arbitrary length: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
from datasets import load_dataset |
|
|
|
# Set device (GPU if available, otherwise CPU) and precision |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
# Specify the pre-trained model ID |
|
model_id = "Oriserve/Whisper-Hindi2Hinglish-Swift" |
|
|
|
# Load the speech-to-text model with specified configurations |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, |
|
torch_dtype=torch_dtype, # Use appropriate precision (float16 for GPU, float32 for CPU) |
|
low_cpu_mem_usage=True, # Optimize memory usage during loading |
|
use_safetensors=True # Use safetensors format for better security |
|
) |
|
model.to(device) # Move model to specified device |
|
|
|
# Load the processor for audio preprocessing and tokenization |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
|
|
# Create speech recognition pipeline |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
generate_kwargs={ |
|
"task": "transcribe", # Set task to transcription |
|
"language": "en" # Specify English language |
|
} |
|
) |
|
|
|
# Process audio file and print transcription |
|
sample = "sample.wav" # Input audio file path |
|
result = pipe(sample) # Run inference |
|
print(result["text"]) # Print transcribed text |
|
``` |
|
|
|
#### Using the OpenAI Whisper module |
|
|
|
- First, install the openai-whisper library |
|
|
|
```pip install -U openai-whisper tqdm``` |
|
|
|
- Convert the huggingface checkpoint to a pytorch model |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq |
|
import re |
|
from tqdm import tqdm |
|
from collections import OrderedDict |
|
import json |
|
|
|
# Load parameter name mapping from HF to OpenAI format |
|
with open('convert_hf2openai.json', 'r') as f: |
|
reverse_translation = json.load(f) |
|
|
|
reverse_translation = OrderedDict(reverse_translation) |
|
|
|
def save_model(model, save_path): |
|
def reverse_translate(current_param): |
|
# Convert parameter names using regex patterns |
|
for pattern, repl in reverse_translation.items(): |
|
if re.match(pattern, current_param): |
|
return re.sub(pattern, repl, current_param) |
|
|
|
# Extract model dimensions from config |
|
config = model.config |
|
model_dims = { |
|
"n_mels": config.num_mel_bins, # Number of mel spectrogram bins |
|
"n_vocab": config.vocab_size, # Vocabulary size |
|
"n_audio_ctx": config.max_source_positions, # Max audio context length |
|
"n_audio_state": config.d_model, # Audio encoder state dimension |
|
"n_audio_head": config.encoder_attention_heads, # Audio encoder attention heads |
|
"n_audio_layer": config.encoder_layers, # Number of audio encoder layers |
|
"n_text_ctx": config.max_target_positions, # Max text context length |
|
"n_text_state": config.d_model, # Text decoder state dimension |
|
"n_text_head": config.decoder_attention_heads, # Text decoder attention heads |
|
"n_text_layer": config.decoder_layers, # Number of text decoder layers |
|
} |
|
|
|
# Convert model state dict to Whisper format |
|
original_model_state_dict = model.state_dict() |
|
new_state_dict = {} |
|
|
|
for key, value in tqdm(original_model_state_dict.items()): |
|
key = key.replace("model.", "") # Remove 'model.' prefix |
|
new_key = reverse_translate(key) # Convert parameter names |
|
if new_key is not None: |
|
new_state_dict[new_key] = value |
|
|
|
# Create final model dictionary |
|
pytorch_model = {"dims": model_dims, "model_state_dict": new_state_dict} |
|
|
|
# Save converted model |
|
torch.save(pytorch_model, save_path) |
|
|
|
# Load Hugging Face model |
|
model_id = "Oriserve/Whisper-Hindi2Hinglish-Swift" |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, |
|
low_cpu_mem_usage=True, # Optimize memory usage |
|
use_safetensors=True # Use safetensors format |
|
) |
|
|
|
# Convert and save model |
|
model_save_path = "Whisper-Hindi2Hinglish-Swift.pt" |
|
save_model(model,model_save_path) |
|
``` |
|
|
|
- Transcribe |
|
|
|
```python |
|
import whisper |
|
# Load converted model with Whisper and transcribe |
|
model = whisper.load_model("Whisper-Hindi2Hinglish-Swift.pt") |
|
result = model.transcribe("sample.wav") |
|
print(result["text"]) |
|
``` |
|
|
|
### Miscellaneous |
|
This model is from a family of transformers-based ASR models trained by Oriserve. To compare this model against other models from the same family or other SOTA models please head to our [Speech-To-Text Arena](https://huggingface.co./spaces/Oriserve/ASR_arena). To learn more about our other models, and other queries regarding AI voice agents you can reach out to us at our email [[email protected]]([email protected]) |