---
language:
- en
- hi
tags:
- audio
- automatic-speech-recognition
- whisper-event
- pytorch
inference: true
model-index:
- name: Whisper-Hindi2Hinglish-Swift
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: hi_in
split: test
metrics:
- type: wer
value: 35.0888
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_20_0
type: mozilla-foundation/common_voice_20_0
config: hi
split: test
metrics:
- type: wer
value: 38.6549
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Indic-Voices
type: Indic-Voices
config: hi
split: test
metrics:
- type: wer
value: 65.2147
name: WER
widget:
- src: audios/f89b6428-c58a-4355-ad63-0752b69f2d30.wav
output:
text: vah bas din mein kitni baar chalti hai?
- src: audios/09cf2547-9d09-4914-926a-cf2043549c15.wav
output:
text: >-
Salmaan ki image se prabhaavit hote hain is company ke share bhaav jaane
kaise?
- src: audios/6f7df89f-91a7-4cbd-be43-af7bce71a34b.wav
output:
text: vah roya aur aur roya.
- src: audios/969bede5-d816-461b-9bf2-bd115e098439.wav
output:
text: helmet na pahnne se bhaarat mein har gante hoti hai chaar logon ki maut.
- src: audios/cef43941-72c9-4d28-88dd-cb62808dc056.wav
output:
text: usne mujhe chithi ka javaab na dene ke lie daanta.
- src: audios/b27d49fe-fced-4a17-9887-7bfbc5d4a899.wav
output:
text: puraana shahar divaaron se ghera hua hai.
- src: audios/common_voice_hi_23796065.mp3
example_title: Speech Example 1
- src: audios/common_voice_hi_41666099.mp3
example_title: Speech Example 2
- src: audios/common_voice_hi_41429198.mp3
example_title: Speech Example 3
- src: audios/common_voice_hi_41429259.mp3
example_title: Speech Example 4
- src: audios/common_voice_hi_40904697.mp3
example_title: Speech Example 5
pipeline_tag: automatic-speech-recognition
license: apache-2.0
metrics:
- wer
base_model:
- openai/whisper-base
library_name: transformers
---
## Whisper-Hindi2Hinglish-Swift:
### Table of Contents:
- [Key Features](#key-features)
- [Training](#training)
- [Data](#data)
- [Finetuning](#finetuning)
- [Usage](#usage)
- [Performance Overview](#performance-overview)
- [Qualitative Performance Overview](#qualitative-performance-overview)
- [Quantitative Performance Overview](#quantitative-performance-overview)
- [Miscellaneous](#miscellaneous)
### Key Features:
1. **Hinglish as a language**: Added ability to transcribe audio into spoken Hinglish language reducing chances of grammatical errors
2. **Whisper Architecture**: Based on the whisper architecture making it easy to use with the transformers package
3. **Hallucination Mitigation**: Minimizes transcription hallucinations to enhance accuracy.
4. **Performance Increase**: ~57% average performance increase versus pretrained model across benchmarking datasets
### Training:
#### Data:
- **Duration**: A total of ~550 Hrs of noisy Indian-accented Hindi data was used to finetune the model.
- **Collection**: Due to a lack of ASR-ready hinglish datasets available, a specially curated proprietary dataset was used.
- **Labelling**: This data was then labeled using a SOTA model and the transcriptions were improved by human intervention.
- **Quality**: Emphasis was placed on collecting noisy data for the task as the intended use case of the model is in Indian environments where background noise is abundant.
- **Processing**: It was ensured that the audios are all chunked into chunks of length <30s, and there are at max 2 speakers in a clip. No further processing steps were done to not change the quality of the source data.
#### Finetuning:
- **Novel Trainer Architecture**: A custom trainer was written to ensure efficient supervised finetuning, with custom callbacks to enable higher observability during the training process.
- **Custom Dynamic Layer Freezing**: Most active layers were identified in the model by running inference on a subset of the training data using the pre-trained models. These layers were then kept unfrozen during the training process while all the other layers were kept frozen. This enabled faster convergence and efficient finetuning
- **Deepspeed Integration**: Deepspeed was also utilized to speed up, and optimize the training process.
### Performance Overview
#### Qualitative Performance Overview
| Audio | Whisper Base | Whisper-Hindi2Hinglish-Swift |
|-------|--------------|------------------------------|
| | وہاں بس دن میں کتنی بار چلتی ہے | vah bas din mein kitni baar chalti hai? |
| | سلمان کی ایمیت سے پراوہویت ہوتے ہیں اس کمپنی کے سیر بھاؤ جانے کیسے | salmaan ki image se prabhaavit hote hain is company ke share bhaav jaane kaise? |
| | تو لویا تو لویا | vah roya aur aur roya. |
| | حلمت نہ پیننے سے بھارت میں ہر گنٹے ہوتی ہے چار لوگوں کی موت | helmet na pahnne se bhaarat mein har gante hoti hai chaar logon ki maut. |
| | اوستہ مجھے چٹھیکہ جواب نہ دینے کے لیٹانٹہ | usne mujhe chithi ka javaab na dene ke lie daanta. |
| | پرانا شاہ دیواروں سے گیرا ہوا ہے | puraana shahar divaaron se ghera hua hai. |
#### Quantitative Performance Overview
***Note***:
- *The below WER scores are for Hinglish text generated by our model and the original whisper model*
- *To check our model's real-world performance against other SOTA models please head to our [Speech-To-Text Arena](https://huggingface.co./spaces/Oriserve/ASR_arena) arena space.*
| Dataset | Whisper Base | Whisper-Hindi2Hinglish-Swift |
|-------|------------------------|-------------------------|
| [Common-Voice](https://commonvoice.mozilla.org/en) | 106.7936 | 38.6549 |
| [FLEURS](https://huggingface.co./datasets/google/fleurs) | 104.2783 | 35.0888 |
| [Indic-Voices](https://ai4bharat.iitm.ac.in/datasets/indicvoices)| 110.8399 | 65.2147 |
### Usage:
#### Using Transformers
- To run the model, first install the Transformers library
```pip install --upgrade transformers```
- The model can be used with the [`pipeline`](https://huggingface.co./docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe audios of arbitrary length:
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset
# Set device (GPU if available, otherwise CPU) and precision
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
# Specify the pre-trained model ID
model_id = "Oriserve/Whisper-Hindi2Hinglish-Swift"
# Load the speech-to-text model with specified configurations
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch_dtype, # Use appropriate precision (float16 for GPU, float32 for CPU)
low_cpu_mem_usage=True, # Optimize memory usage during loading
use_safetensors=True # Use safetensors format for better security
)
model.to(device) # Move model to specified device
# Load the processor for audio preprocessing and tokenization
processor = AutoProcessor.from_pretrained(model_id)
# Create speech recognition pipeline
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
device=device,
generate_kwargs={
"task": "transcribe", # Set task to transcription
"language": "en" # Specify English language
}
)
# Process audio file and print transcription
sample = "sample.wav" # Input audio file path
result = pipe(sample) # Run inference
print(result["text"]) # Print transcribed text
```
#### Using the OpenAI Whisper module
- First, install the openai-whisper library
```pip install -U openai-whisper tqdm```
- Convert the huggingface checkpoint to a pytorch model
```python
import torch
from transformers import AutoModelForSpeechSeq2Seq
import re
from tqdm import tqdm
from collections import OrderedDict
import json
# Load parameter name mapping from HF to OpenAI format
with open('convert_hf2openai.json', 'r') as f:
reverse_translation = json.load(f)
reverse_translation = OrderedDict(reverse_translation)
def save_model(model, save_path):
def reverse_translate(current_param):
# Convert parameter names using regex patterns
for pattern, repl in reverse_translation.items():
if re.match(pattern, current_param):
return re.sub(pattern, repl, current_param)
# Extract model dimensions from config
config = model.config
model_dims = {
"n_mels": config.num_mel_bins, # Number of mel spectrogram bins
"n_vocab": config.vocab_size, # Vocabulary size
"n_audio_ctx": config.max_source_positions, # Max audio context length
"n_audio_state": config.d_model, # Audio encoder state dimension
"n_audio_head": config.encoder_attention_heads, # Audio encoder attention heads
"n_audio_layer": config.encoder_layers, # Number of audio encoder layers
"n_text_ctx": config.max_target_positions, # Max text context length
"n_text_state": config.d_model, # Text decoder state dimension
"n_text_head": config.decoder_attention_heads, # Text decoder attention heads
"n_text_layer": config.decoder_layers, # Number of text decoder layers
}
# Convert model state dict to Whisper format
original_model_state_dict = model.state_dict()
new_state_dict = {}
for key, value in tqdm(original_model_state_dict.items()):
key = key.replace("model.", "") # Remove 'model.' prefix
new_key = reverse_translate(key) # Convert parameter names
if new_key is not None:
new_state_dict[new_key] = value
# Create final model dictionary
pytorch_model = {"dims": model_dims, "model_state_dict": new_state_dict}
# Save converted model
torch.save(pytorch_model, save_path)
# Load Hugging Face model
model_id = "Oriserve/Whisper-Hindi2Hinglish-Swift"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
low_cpu_mem_usage=True, # Optimize memory usage
use_safetensors=True # Use safetensors format
)
# Convert and save model
model_save_path = "Whisper-Hindi2Hinglish-Swift.pt"
save_model(model,model_save_path)
```
- Transcribe
```python
import whisper
# Load converted model with Whisper and transcribe
model = whisper.load_model("Whisper-Hindi2Hinglish-Swift.pt")
result = model.transcribe("sample.wav")
print(result["text"])
```
### Miscellaneous
This model is from a family of transformers-based ASR models trained by Oriserve. To compare this model against other models from the same family or other SOTA models please head to our [Speech-To-Text Arena](https://huggingface.co./spaces/Oriserve/ASR_arena). To learn more about our other models, and other queries regarding AI voice agents you can reach out to us at our email [ai-team@oriserve.com](ai-team@oriserve.com)