|
--- |
|
license: mit |
|
language: |
|
- multilingual |
|
pipeline_tag: image-text-to-text |
|
tags: |
|
- nlp |
|
- vision |
|
- internvl |
|
base_model: |
|
- OpenGVLab/InternVL2-2B |
|
base_model_relation: quantized |
|
--- |
|
|
|
# InternVL2-2B-int4-ov |
|
|
|
* Model creator: [OpenGVLab](https://huggingface.co./OpenGVLab) |
|
* Original model: [InternVL2-2B](https://huggingface.co./OpenGVLab/InternVL2-2B) |
|
|
|
## Description |
|
|
|
This is [OpenGVLab/InternVL2-2B](https://huggingface.co./OpenGVLab/InternVL2-2B) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 using Activation Aware Quantization (AWQ) by [NNCF](https://github.com/openvinotoolkit/nncf). |
|
|
|
|
|
## Quantization Parameters |
|
|
|
Weight compression was performed using `nncf.compress_weights` with the following parameters: |
|
|
|
* mode: **INT4_ASYM** |
|
* ratio: **1.0** |
|
* group_size: **128** |
|
* awq: **True** |
|
* dataset: **[contextual](https://huggingface.co./datasets/ucla-contextual/contextual_test)** |
|
* num_samples: **32** |
|
|
|
|
|
## Compatibility |
|
|
|
The provided OpenVINO™ IR model is compatible with: |
|
|
|
* OpenVINO version 2025.0.0 and higher |
|
* Optimum Intel 1.21.0 and higher |
|
|
|
## Running Model Inference with [Optimum Intel](https://huggingface.co./docs/optimum/intel/index) |
|
|
|
1. Install packages required for using [Optimum Intel](https://huggingface.co./docs/optimum/intel/index) integration with the OpenVINO backend: |
|
|
|
``` |
|
pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino |
|
|
|
pip install git+https://github.com/huggingface/optimum-intel.git |
|
``` |
|
|
|
2. Run model inference |
|
|
|
``` |
|
from PIL import Image |
|
import requests |
|
from optimum.intel.openvino import OVModelForVisualCausalLM |
|
from transformers import AutoTokenizer, TextStreamer |
|
|
|
model_id = "OpenVINO/InternVL2-2B-int4-ov" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True) |
|
prompt = "What is unusual on this picture?" |
|
|
|
url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
inputs = ov_model.preprocess_inputs(text=prompt, image=image, tokenizer=tokenizer, config=ov_model.config) |
|
|
|
generation_args = { |
|
"max_new_tokens": 100, |
|
"streamer": TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) |
|
} |
|
|
|
generate_ids = ov_model.generate(**inputs, **generation_args) |
|
|
|
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] |
|
response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0] |
|
|
|
``` |
|
|
|
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai) |
|
|
|
1. Install packages required for using OpenVINO GenAI. |
|
``` |
|
pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino openvino-tokenizers openvino-genai |
|
|
|
pip install huggingface_hub |
|
``` |
|
|
|
2. Download model from HuggingFace Hub |
|
|
|
``` |
|
import huggingface_hub as hf_hub |
|
|
|
model_id = "OpenVINO/InternVL2-2B-int4-ov" |
|
model_path = "InternVL2-2B-int4-ov" |
|
|
|
hf_hub.snapshot_download(model_id, local_dir=model_path) |
|
|
|
``` |
|
|
|
1. Run model inference: |
|
|
|
``` |
|
import openvino_genai as ov_genai |
|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
import numpy as np |
|
import openvino as ov |
|
|
|
device = "CPU" |
|
pipe = ov_genai.VLMPipeline(model_path, device) |
|
|
|
def load_image(image_file): |
|
if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")): |
|
response = requests.get(image_file) |
|
image = Image.open(BytesIO(response.content)).convert("RGB") |
|
else: |
|
image = Image.open(image_file).convert("RGB") |
|
image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte) |
|
return ov.Tensor(image_data) |
|
|
|
prompt = "What is unusual on this picture?" |
|
|
|
url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11" |
|
image_tensor = load_image(url) |
|
|
|
def streamer(subword: str) -> bool: |
|
print(subword, end="", flush=True) |
|
return False |
|
|
|
pipe.start_chat() |
|
output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100, streamer=streamer) |
|
pipe.start_chat() |
|
``` |
|
|
|
More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples) |
|
|
|
|
|
## Limitations |
|
|
|
|
|
Check the original [model card](https://huggingface.co./OpenGVLab/InternVL2-2B) for limitations. |
|
|
|
## Legal information |
|
|
|
The original model is distributed under [MIT](https://huggingface.co./datasets/choosealicense/licenses/blob/main/markdown/mit.md) license. More details can be found in [original model card](https://huggingface.co./OpenGVLab/InternVL2-2B). |
|
|
|
|