katuni4ka commited on
Commit
d2e787d
·
verified ·
1 Parent(s): 907de3e

Upload 26 files

Browse files
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - multilingual
5
+ pipeline_tag: image-text-to-text
6
+ tags:
7
+ - nlp
8
+ - vision
9
+ - internvl
10
+ base_model:
11
+ - OpenGVLab/InternVL2-2B
12
+ base_model_relation: quantized
13
+ ---
14
+
15
+ # InternVL2-2B-int4-ov
16
+
17
+ * Model creator: [OpenGVLab](https://huggingface.co/OpenGVLab)
18
+ * Original model: [InternVL2-2B](https://huggingface.co/OpenGVLab/InternVL2-2B)
19
+
20
+ ## Description
21
+
22
+ This is [OpenGVLab/InternVL2-2B](https://huggingface.co/OpenGVLab/InternVL2-2B) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 using Activation Aware Quantization (AWQ) by [NNCF](https://github.com/openvinotoolkit/nncf).
23
+
24
+
25
+ ## Quantization Parameters
26
+
27
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
28
+
29
+ * mode: **INT4_ASYM**
30
+ * ratio: **1.0**
31
+ * group_size: **128**
32
+ * awq: **True**
33
+ * dataset: **[contextual](https://huggingface.co/datasets/ucla-contextual/contextual_test)**
34
+ * num_samples: **32**
35
+
36
+
37
+ ## Compatibility
38
+
39
+ The provided OpenVINO™ IR model is compatible with:
40
+
41
+ * OpenVINO version 2025.0.0 and higher
42
+ * Optimum Intel 1.21.0 and higher
43
+
44
+ ## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
45
+
46
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
47
+
48
+ ```
49
+ pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino_tokenizers openvino
50
+
51
+ pip install git+https://github.com/huggingface/optimum-intel.git
52
+ ```
53
+
54
+ 2. Run model inference
55
+
56
+ ```
57
+ from PIL import Image
58
+ import requests
59
+ from optimum.intel.openvino import OVModelForVisualCausalLM
60
+ from transformers import AutoTokenizer, TextStreamer
61
+
62
+ model_id = "OpenVINO/InternVL2-2B-int4-ov"
63
+
64
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
65
+
66
+ ov_model = OVModelForVisualCausalLM.from_pretrained(model_id, trust_remote_code=True)
67
+ prompt = "What is unusual on this picture?"
68
+
69
+ url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
70
+ image = Image.open(requests.get(url, stream=True).raw)
71
+
72
+ inputs = ov_model.preprocess_inputs(text=prompt, image=image, tokenizer=tokenizer, config=ov_model.config)
73
+
74
+ generation_args = {
75
+ "max_new_tokens": 100,
76
+ "streamer": TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
77
+ }
78
+
79
+ generate_ids = ov_model.generate(**inputs, **generation_args)
80
+
81
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
82
+ response = tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
83
+
84
+ ```
85
+
86
+ ## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
87
+
88
+ 1. Install packages required for using OpenVINO GenAI.
89
+ ```
90
+ pip install --pre -U --extra-index-url https://storage.openvinotoolkit.org/simple/wheels/pre-release openvino openvino-tokenizers openvino-genai
91
+
92
+ pip install huggingface_hub
93
+ ```
94
+
95
+ 2. Download model from HuggingFace Hub
96
+
97
+ ```
98
+ import huggingface_hub as hf_hub
99
+
100
+ model_id = "OpenVINO/InternVL2-2B-int4-ov"
101
+ model_path = "InternVL2-2B-int4-ov"
102
+
103
+ hf_hub.snapshot_download(model_id, local_dir=model_path)
104
+
105
+ ```
106
+
107
+ 1. Run model inference:
108
+
109
+ ```
110
+ import openvino_genai as ov_genai
111
+ import requests
112
+ from PIL import Image
113
+ from io import BytesIO
114
+ import numpy as np
115
+ import openvino as ov
116
+
117
+ device = "CPU"
118
+ pipe = ov_genai.VLMPipeline(model_path, device)
119
+
120
+ def load_image(image_file):
121
+ if isinstance(image_file, str) and (image_file.startswith("http") or image_file.startswith("https")):
122
+ response = requests.get(image_file)
123
+ image = Image.open(BytesIO(response.content)).convert("RGB")
124
+ else:
125
+ image = Image.open(image_file).convert("RGB")
126
+ image_data = np.array(image.getdata()).reshape(1, image.size[1], image.size[0], 3).astype(np.byte)
127
+ return ov.Tensor(image_data)
128
+
129
+ prompt = "What is unusual on this picture?"
130
+
131
+ url = "https://github.com/openvinotoolkit/openvino_notebooks/assets/29454499/d5fbbd1a-d484-415c-88cb-9986625b7b11"
132
+ image_tensor = load_image(url)
133
+
134
+ def streamer(subword: str) -> bool:
135
+ print(subword, end="", flush=True)
136
+ return False
137
+
138
+ pipe.start_chat()
139
+ output = pipe.generate(prompt, image=image_tensor, max_new_tokens=100, streamer=streamer)
140
+ pipe.start_chat()
141
+ ```
142
+
143
+ More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)
144
+
145
+
146
+ ## Limitations
147
+
148
+
149
+ Check the original [model card](https://huggingface.co/OpenGVLab/InternVL2-2B) for limitations.
150
+
151
+ ## Legal information
152
+
153
+ The original model is distributed under [MIT](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/mit.md) license. More details can be found in [original model card](https://huggingface.co/OpenGVLab/InternVL2-2B).
154
+
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 92552,
3
+ "</img>": 92545,
4
+ "</quad>": 92548,
5
+ "</ref>": 92550,
6
+ "<IMG_CONTEXT>": 92546,
7
+ "<box>": 92551,
8
+ "<img>": 92544,
9
+ "<quad>": 92547,
10
+ "<ref>": 92549
11
+ }
config.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_commit_hash": null,
4
+ "_name_or_path": "/tmp/tmp69jurajh",
5
+ "architectures": [
6
+ "InternVLChatModel"
7
+ ],
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
10
+ "AutoModel": "OpenGVLab/InternVL2-2B--modeling_internvl_chat.InternVLChatModel",
11
+ "AutoModelForCausalLM": "OpenGVLab/InternVL2-2B--modeling_internvl_chat.InternVLChatModel"
12
+ },
13
+ "downsample_ratio": 0.5,
14
+ "dynamic_image_size": true,
15
+ "force_image_size": 448,
16
+ "img_context_token_id": 92546,
17
+ "llm_config": {
18
+ "_attn_implementation_autoset": true,
19
+ "_name_or_path": "internlm/internlm2-chat-1_8b",
20
+ "add_cross_attention": false,
21
+ "architectures": [
22
+ "InternLM2ForCausalLM"
23
+ ],
24
+ "attn_implementation": "eager",
25
+ "auto_map": {
26
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
27
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
28
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
29
+ },
30
+ "bad_words_ids": null,
31
+ "begin_suppress_tokens": null,
32
+ "bias": false,
33
+ "bos_token_id": 1,
34
+ "chunk_size_feed_forward": 0,
35
+ "cross_attention_hidden_size": null,
36
+ "decoder_start_token_id": null,
37
+ "diversity_penalty": 0.0,
38
+ "do_sample": false,
39
+ "early_stopping": false,
40
+ "encoder_no_repeat_ngram_size": 0,
41
+ "eos_token_id": 2,
42
+ "exponential_decay_length_penalty": null,
43
+ "finetuning_task": null,
44
+ "forced_bos_token_id": null,
45
+ "forced_eos_token_id": null,
46
+ "hidden_act": "silu",
47
+ "hidden_size": 2048,
48
+ "id2label": {
49
+ "0": "LABEL_0",
50
+ "1": "LABEL_1"
51
+ },
52
+ "initializer_range": 0.02,
53
+ "intermediate_size": 8192,
54
+ "is_decoder": false,
55
+ "is_encoder_decoder": false,
56
+ "label2id": {
57
+ "LABEL_0": 0,
58
+ "LABEL_1": 1
59
+ },
60
+ "length_penalty": 1.0,
61
+ "max_length": 20,
62
+ "max_position_embeddings": 32768,
63
+ "min_length": 0,
64
+ "model_type": "internlm2",
65
+ "no_repeat_ngram_size": 0,
66
+ "num_attention_heads": 16,
67
+ "num_beam_groups": 1,
68
+ "num_beams": 1,
69
+ "num_hidden_layers": 24,
70
+ "num_key_value_heads": 8,
71
+ "num_return_sequences": 1,
72
+ "output_attentions": false,
73
+ "output_hidden_states": false,
74
+ "output_scores": false,
75
+ "pad_token_id": 2,
76
+ "prefix": null,
77
+ "problem_type": null,
78
+ "pruned_heads": {},
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "rms_norm_eps": 1e-05,
84
+ "rope_scaling": {
85
+ "factor": 2.0,
86
+ "type": "dynamic"
87
+ },
88
+ "rope_theta": 1000000,
89
+ "sep_token_id": null,
90
+ "suppress_tokens": null,
91
+ "task_specific_params": null,
92
+ "temperature": 1.0,
93
+ "tf_legacy_loss": false,
94
+ "tie_encoder_decoder": false,
95
+ "tie_word_embeddings": false,
96
+ "tokenizer_class": null,
97
+ "top_k": 50,
98
+ "top_p": 1.0,
99
+ "torch_dtype": "bfloat16",
100
+ "torchscript": false,
101
+ "transformers_version": "4.47.0",
102
+ "typical_p": 1.0,
103
+ "use_bfloat16": true,
104
+ "use_cache": true,
105
+ "vocab_size": 92553
106
+ },
107
+ "max_dynamic_patch": 12,
108
+ "min_dynamic_patch": 1,
109
+ "model_type": "internvl_chat",
110
+ "ps_version": "v2",
111
+ "select_layer": -1,
112
+ "template": "internlm2-chat",
113
+ "transformers_version": null,
114
+ "use_backbone_lora": 0,
115
+ "use_llm_lora": 0,
116
+ "use_thumbnail": true,
117
+ "vision_config": {
118
+ "_attn_implementation_autoset": true,
119
+ "_name_or_path": "",
120
+ "add_cross_attention": false,
121
+ "architectures": [
122
+ "InternVisionModel"
123
+ ],
124
+ "attention_dropout": 0.0,
125
+ "bad_words_ids": null,
126
+ "begin_suppress_tokens": null,
127
+ "bos_token_id": null,
128
+ "chunk_size_feed_forward": 0,
129
+ "cross_attention_hidden_size": null,
130
+ "decoder_start_token_id": null,
131
+ "diversity_penalty": 0.0,
132
+ "do_sample": false,
133
+ "drop_path_rate": 0.0,
134
+ "dropout": 0.0,
135
+ "early_stopping": false,
136
+ "encoder_no_repeat_ngram_size": 0,
137
+ "eos_token_id": null,
138
+ "exponential_decay_length_penalty": null,
139
+ "finetuning_task": null,
140
+ "forced_bos_token_id": null,
141
+ "forced_eos_token_id": null,
142
+ "hidden_act": "gelu",
143
+ "hidden_size": 1024,
144
+ "id2label": {
145
+ "0": "LABEL_0",
146
+ "1": "LABEL_1"
147
+ },
148
+ "image_size": 448,
149
+ "initializer_factor": 1.0,
150
+ "initializer_range": 0.02,
151
+ "intermediate_size": 4096,
152
+ "is_decoder": false,
153
+ "is_encoder_decoder": false,
154
+ "label2id": {
155
+ "LABEL_0": 0,
156
+ "LABEL_1": 1
157
+ },
158
+ "layer_norm_eps": 1e-06,
159
+ "length_penalty": 1.0,
160
+ "max_length": 20,
161
+ "min_length": 0,
162
+ "model_type": "intern_vit_6b",
163
+ "no_repeat_ngram_size": 0,
164
+ "norm_type": "layer_norm",
165
+ "num_attention_heads": 16,
166
+ "num_beam_groups": 1,
167
+ "num_beams": 1,
168
+ "num_channels": 3,
169
+ "num_hidden_layers": 24,
170
+ "num_return_sequences": 1,
171
+ "output_attentions": false,
172
+ "output_hidden_states": false,
173
+ "output_scores": false,
174
+ "pad_token_id": null,
175
+ "patch_size": 14,
176
+ "prefix": null,
177
+ "problem_type": null,
178
+ "pruned_heads": {},
179
+ "qk_normalization": false,
180
+ "qkv_bias": true,
181
+ "remove_invalid_values": false,
182
+ "repetition_penalty": 1.0,
183
+ "return_dict": true,
184
+ "return_dict_in_generate": false,
185
+ "sep_token_id": null,
186
+ "suppress_tokens": null,
187
+ "task_specific_params": null,
188
+ "temperature": 1.0,
189
+ "tf_legacy_loss": false,
190
+ "tie_encoder_decoder": false,
191
+ "tie_word_embeddings": true,
192
+ "tokenizer_class": null,
193
+ "top_k": 50,
194
+ "top_p": 1.0,
195
+ "torch_dtype": "bfloat16",
196
+ "torchscript": false,
197
+ "transformers_version": "4.47.0",
198
+ "typical_p": 1.0,
199
+ "use_bfloat16": true,
200
+ "use_flash_attn": false
201
+ }
202
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import os
8
+ from typing import Union
9
+
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ logger = logging.get_logger(__name__)
14
+
15
+
16
+ class InternVisionConfig(PretrainedConfig):
17
+ r"""
18
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
+
21
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
+ documentation from [`PretrainedConfig`] for more information.
23
+
24
+ Args:
25
+ num_channels (`int`, *optional*, defaults to 3):
26
+ Number of color channels in the input images (e.g., 3 for RGB).
27
+ patch_size (`int`, *optional*, defaults to 14):
28
+ The size (resolution) of each patch.
29
+ image_size (`int`, *optional*, defaults to 224):
30
+ The size (resolution) of each image.
31
+ qkv_bias (`bool`, *optional*, defaults to `False`):
32
+ Whether to add a bias to the queries and values in the self-attention layers.
33
+ hidden_size (`int`, *optional*, defaults to 3200):
34
+ Dimensionality of the encoder layers and the pooler layer.
35
+ num_attention_heads (`int`, *optional*, defaults to 25):
36
+ Number of attention heads for each attention layer in the Transformer encoder.
37
+ intermediate_size (`int`, *optional*, defaults to 12800):
38
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
+ qk_normalization (`bool`, *optional*, defaults to `True`):
40
+ Whether to normalize the queries and keys in the self-attention layers.
41
+ num_hidden_layers (`int`, *optional*, defaults to 48):
42
+ Number of hidden layers in the Transformer encoder.
43
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
44
+ Whether to use flash attention mechanism.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
+ The epsilon used by the layer normalization layers.
50
+ dropout (`float`, *optional*, defaults to 0.0):
51
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
53
+ Dropout rate for stochastic depth.
54
+ attention_dropout (`float`, *optional*, defaults to 0.0):
55
+ The dropout ratio for the attention probabilities.
56
+ initializer_range (`float`, *optional*, defaults to 0.02):
57
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
+ initializer_factor (`float`, *optional*, defaults to 0.1):
59
+ A factor for layer scale.
60
+ """
61
+
62
+ model_type = 'intern_vit_6b'
63
+
64
+ def __init__(
65
+ self,
66
+ num_channels=3,
67
+ patch_size=14,
68
+ image_size=224,
69
+ qkv_bias=False,
70
+ hidden_size=3200,
71
+ num_attention_heads=25,
72
+ intermediate_size=12800,
73
+ qk_normalization=True,
74
+ num_hidden_layers=48,
75
+ use_flash_attn=True,
76
+ hidden_act='gelu',
77
+ norm_type='rms_norm',
78
+ layer_norm_eps=1e-6,
79
+ dropout=0.0,
80
+ drop_path_rate=0.0,
81
+ attention_dropout=0.0,
82
+ initializer_range=0.02,
83
+ initializer_factor=0.1,
84
+ **kwargs,
85
+ ):
86
+ super().__init__(**kwargs)
87
+
88
+ self.hidden_size = hidden_size
89
+ self.intermediate_size = intermediate_size
90
+ self.dropout = dropout
91
+ self.drop_path_rate = drop_path_rate
92
+ self.num_hidden_layers = num_hidden_layers
93
+ self.num_attention_heads = num_attention_heads
94
+ self.num_channels = num_channels
95
+ self.patch_size = patch_size
96
+ self.image_size = image_size
97
+ self.initializer_range = initializer_range
98
+ self.initializer_factor = initializer_factor
99
+ self.attention_dropout = attention_dropout
100
+ self.layer_norm_eps = layer_norm_eps
101
+ self.hidden_act = hidden_act
102
+ self.norm_type = norm_type
103
+ self.qkv_bias = qkv_bias
104
+ self.qk_normalization = qk_normalization
105
+ self.use_flash_attn = use_flash_attn
106
+
107
+ @classmethod
108
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
+
111
+ if 'vision_config' in config_dict:
112
+ config_dict = config_dict['vision_config']
113
+
114
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
+ logger.warning(
116
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
+ )
119
+
120
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+ logger = logging.get_logger(__name__)
17
+
18
+
19
+ class InternVLChatConfig(PretrainedConfig):
20
+ model_type = 'internvl_chat'
21
+ is_composition = True
22
+
23
+ def __init__(
24
+ self,
25
+ vision_config=None,
26
+ llm_config=None,
27
+ use_backbone_lora=0,
28
+ use_llm_lora=0,
29
+ select_layer=-1,
30
+ force_image_size=None,
31
+ downsample_ratio=0.5,
32
+ template=None,
33
+ dynamic_image_size=False,
34
+ use_thumbnail=False,
35
+ ps_version='v1',
36
+ min_dynamic_patch=1,
37
+ max_dynamic_patch=6,
38
+ **kwargs):
39
+ super().__init__(**kwargs)
40
+
41
+ if vision_config is None:
42
+ vision_config = {'architectures': ['InternVisionModel']}
43
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
44
+
45
+ if llm_config is None:
46
+ llm_config = {'architectures': ['InternLM2ForCausalLM']}
47
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
48
+
49
+ self.vision_config = InternVisionConfig(**vision_config)
50
+ if llm_config.get('architectures')[0] == 'LlamaForCausalLM':
51
+ self.llm_config = LlamaConfig(**llm_config)
52
+ elif llm_config.get('architectures')[0] == 'InternLM2ForCausalLM':
53
+ self.llm_config = InternLM2Config(**llm_config)
54
+ else:
55
+ raise ValueError('Unsupported architecture: {}'.format(llm_config.get('architectures')[0]))
56
+ self.use_backbone_lora = use_backbone_lora
57
+ self.use_llm_lora = use_llm_lora
58
+ self.select_layer = select_layer
59
+ self.force_image_size = force_image_size
60
+ self.downsample_ratio = downsample_ratio
61
+ self.template = template
62
+ self.dynamic_image_size = dynamic_image_size
63
+ self.use_thumbnail = use_thumbnail
64
+ self.ps_version = ps_version # pixel shuffle version
65
+ self.min_dynamic_patch = min_dynamic_patch
66
+ self.max_dynamic_patch = max_dynamic_patch
67
+
68
+ logger.info(f'vision_select_layer: {self.select_layer}')
69
+ logger.info(f'ps_version: {self.ps_version}')
70
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
71
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
72
+
73
+ def to_dict(self):
74
+ """
75
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
76
+
77
+ Returns:
78
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
79
+ """
80
+ output = copy.deepcopy(self.__dict__)
81
+ output['vision_config'] = self.vision_config.to_dict()
82
+ output['llm_config'] = self.llm_config.to_dict()
83
+ output['model_type'] = self.__class__.model_type
84
+ output['use_backbone_lora'] = self.use_backbone_lora
85
+ output['use_llm_lora'] = self.use_llm_lora
86
+ output['select_layer'] = self.select_layer
87
+ output['force_image_size'] = self.force_image_size
88
+ output['downsample_ratio'] = self.downsample_ratio
89
+ output['template'] = self.template
90
+ output['dynamic_image_size'] = self.dynamic_image_size
91
+ output['use_thumbnail'] = self.use_thumbnail
92
+ output['ps_version'] = self.ps_version
93
+ output['min_dynamic_patch'] = self.min_dynamic_patch
94
+ output['max_dynamic_patch'] = self.max_dynamic_patch
95
+
96
+ return output
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "eos_token_id": [
4
+ 92542,
5
+ 92543
6
+ ],
7
+ "transformers_version": "4.47.0"
8
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.nn.functional as F
11
+ import torch.utils.checkpoint
12
+ from einops import rearrange
13
+ from timm.models.layers import DropPath
14
+ from torch import nn
15
+ from transformers.activations import ACT2FN
16
+ from transformers.modeling_outputs import (BaseModelOutput,
17
+ BaseModelOutputWithPooling)
18
+ from transformers.modeling_utils import PreTrainedModel
19
+ from transformers.utils import logging
20
+
21
+ from .configuration_intern_vit import InternVisionConfig
22
+
23
+ try:
24
+ from flash_attn.bert_padding import pad_input, unpad_input
25
+ from flash_attn.flash_attn_interface import \
26
+ flash_attn_varlen_qkvpacked_func
27
+ has_flash_attn = True
28
+ except:
29
+ print('FlashAttention2 is not installed.')
30
+ has_flash_attn = False
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+
35
+ class FlashAttention(nn.Module):
36
+ """Implement the scaled dot product attention with softmax.
37
+ Arguments
38
+ ---------
39
+ softmax_scale: The temperature to use for the softmax attention.
40
+ (default: 1/sqrt(d_keys) where d_keys is computed at
41
+ runtime)
42
+ attention_dropout: The dropout rate to apply to the attention
43
+ (default: 0.0)
44
+ """
45
+
46
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
47
+ super().__init__()
48
+ self.softmax_scale = softmax_scale
49
+ self.dropout_p = attention_dropout
50
+
51
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
52
+ max_s=None, need_weights=False):
53
+ """Implements the multihead softmax attention.
54
+ Arguments
55
+ ---------
56
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
57
+ if unpadded: (nnz, 3, h, d)
58
+ key_padding_mask: a bool tensor of shape (B, S)
59
+ """
60
+ assert not need_weights
61
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
62
+ assert qkv.is_cuda
63
+
64
+ if cu_seqlens is None:
65
+ batch_size = qkv.shape[0]
66
+ seqlen = qkv.shape[1]
67
+ if key_padding_mask is None:
68
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
69
+ max_s = seqlen
70
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
71
+ device=qkv.device)
72
+ output = flash_attn_varlen_qkvpacked_func(
73
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
74
+ softmax_scale=self.softmax_scale, causal=causal
75
+ )
76
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
77
+ else:
78
+ nheads = qkv.shape[-2]
79
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
80
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
81
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
82
+ output_unpad = flash_attn_varlen_qkvpacked_func(
83
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
84
+ softmax_scale=self.softmax_scale, causal=causal
85
+ )
86
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
87
+ indices, batch_size, seqlen),
88
+ 'b s (h d) -> b s h d', h=nheads)
89
+ else:
90
+ assert max_s is not None
91
+ output = flash_attn_varlen_qkvpacked_func(
92
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
93
+ softmax_scale=self.softmax_scale, causal=causal
94
+ )
95
+
96
+ return output, None
97
+
98
+
99
+ class InternRMSNorm(nn.Module):
100
+ def __init__(self, hidden_size, eps=1e-6):
101
+ super().__init__()
102
+ self.weight = nn.Parameter(torch.ones(hidden_size))
103
+ self.variance_epsilon = eps
104
+
105
+ def forward(self, hidden_states):
106
+ input_dtype = hidden_states.dtype
107
+ hidden_states = hidden_states.to(torch.float32)
108
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
109
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
110
+ return self.weight * hidden_states.to(input_dtype)
111
+
112
+
113
+ try:
114
+ from apex.normalization import FusedRMSNorm
115
+
116
+ InternRMSNorm = FusedRMSNorm # noqa
117
+
118
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
119
+ except ImportError:
120
+ # using the normal InternRMSNorm
121
+ pass
122
+ except Exception:
123
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
124
+ pass
125
+
126
+
127
+ NORM2FN = {
128
+ 'rms_norm': InternRMSNorm,
129
+ 'layer_norm': nn.LayerNorm,
130
+ }
131
+
132
+
133
+ class InternVisionEmbeddings(nn.Module):
134
+ def __init__(self, config: InternVisionConfig):
135
+ super().__init__()
136
+ self.config = config
137
+ self.embed_dim = config.hidden_size
138
+ self.image_size = config.image_size
139
+ self.patch_size = config.patch_size
140
+
141
+ self.class_embedding = nn.Parameter(
142
+ torch.randn(1, 1, self.embed_dim),
143
+ )
144
+
145
+ self.patch_embedding = nn.Conv2d(
146
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
147
+ )
148
+
149
+ self.num_patches = (self.image_size // self.patch_size) ** 2
150
+ self.num_positions = self.num_patches + 1
151
+
152
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
153
+
154
+ def _get_pos_embed(self, pos_embed, H, W):
155
+ target_dtype = pos_embed.dtype
156
+ pos_embed = pos_embed.float().reshape(
157
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
158
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
159
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
160
+ return pos_embed
161
+
162
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
163
+ target_dtype = self.patch_embedding.weight.dtype
164
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
165
+ batch_size, _, height, width = patch_embeds.shape
166
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
167
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
168
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
169
+ position_embedding = torch.cat([
170
+ self.position_embedding[:, :1, :],
171
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
172
+ ], dim=1)
173
+ embeddings = embeddings + position_embedding.to(target_dtype)
174
+ return embeddings
175
+
176
+
177
+ class InternAttention(nn.Module):
178
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
179
+
180
+ def __init__(self, config: InternVisionConfig):
181
+ super().__init__()
182
+ self.config = config
183
+ self.embed_dim = config.hidden_size
184
+ self.num_heads = config.num_attention_heads
185
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
186
+ if config.use_flash_attn and not has_flash_attn:
187
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
188
+ self.head_dim = self.embed_dim // self.num_heads
189
+ if self.head_dim * self.num_heads != self.embed_dim:
190
+ raise ValueError(
191
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
192
+ f' {self.num_heads}).'
193
+ )
194
+
195
+ self.scale = self.head_dim ** -0.5
196
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
197
+ self.attn_drop = nn.Dropout(config.attention_dropout)
198
+ self.proj_drop = nn.Dropout(config.dropout)
199
+
200
+ self.qk_normalization = config.qk_normalization
201
+
202
+ if self.qk_normalization:
203
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
205
+
206
+ if self.use_flash_attn:
207
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
208
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
209
+
210
+ def _naive_attn(self, x):
211
+ B, N, C = x.shape
212
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
213
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
214
+
215
+ if self.qk_normalization:
216
+ B_, H_, N_, D_ = q.shape
217
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
219
+
220
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
221
+ attn = attn.softmax(dim=-1)
222
+ attn = self.attn_drop(attn)
223
+
224
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
225
+ x = self.proj(x)
226
+ x = self.proj_drop(x)
227
+ return x
228
+
229
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
230
+ qkv = self.qkv(x)
231
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
232
+
233
+ if self.qk_normalization:
234
+ q, k, v = qkv.unbind(2)
235
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
236
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
237
+ qkv = torch.stack([q, k, v], dim=2)
238
+
239
+ context, _ = self.inner_attn(
240
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
241
+ )
242
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
243
+ outs = self.proj_drop(outs)
244
+ return outs
245
+
246
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
247
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
248
+ return x
249
+
250
+
251
+ class InternMLP(nn.Module):
252
+ def __init__(self, config: InternVisionConfig):
253
+ super().__init__()
254
+ self.config = config
255
+ self.act = ACT2FN[config.hidden_act]
256
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
257
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
258
+
259
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
260
+ hidden_states = self.fc1(hidden_states)
261
+ hidden_states = self.act(hidden_states)
262
+ hidden_states = self.fc2(hidden_states)
263
+ return hidden_states
264
+
265
+
266
+ class InternVisionEncoderLayer(nn.Module):
267
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
268
+ super().__init__()
269
+ self.embed_dim = config.hidden_size
270
+ self.intermediate_size = config.intermediate_size
271
+ self.norm_type = config.norm_type
272
+
273
+ self.attn = InternAttention(config)
274
+ self.mlp = InternMLP(config)
275
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
277
+
278
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
280
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
282
+
283
+ def forward(
284
+ self,
285
+ hidden_states: torch.Tensor,
286
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
287
+ """
288
+ Args:
289
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
290
+ """
291
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
292
+
293
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
294
+
295
+ return hidden_states
296
+
297
+
298
+ class InternVisionEncoder(nn.Module):
299
+ """
300
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
301
+ [`InternEncoderLayer`].
302
+
303
+ Args:
304
+ config (`InternConfig`):
305
+ The corresponding vision configuration for the `InternEncoder`.
306
+ """
307
+
308
+ def __init__(self, config: InternVisionConfig):
309
+ super().__init__()
310
+ self.config = config
311
+ # stochastic depth decay rule
312
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
313
+ self.layers = nn.ModuleList([
314
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
315
+ self.gradient_checkpointing = True
316
+
317
+ def forward(
318
+ self,
319
+ inputs_embeds,
320
+ output_hidden_states: Optional[bool] = None,
321
+ return_dict: Optional[bool] = None,
322
+ ) -> Union[Tuple, BaseModelOutput]:
323
+ r"""
324
+ Args:
325
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
326
+ Embedded representation of the inputs. Should be float, not int tokens.
327
+ output_hidden_states (`bool`, *optional*):
328
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
329
+ for more detail.
330
+ return_dict (`bool`, *optional*):
331
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
332
+ """
333
+ output_hidden_states = (
334
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
335
+ )
336
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
337
+
338
+ encoder_states = () if output_hidden_states else None
339
+ hidden_states = inputs_embeds
340
+
341
+ for idx, encoder_layer in enumerate(self.layers):
342
+ if output_hidden_states:
343
+ encoder_states = encoder_states + (hidden_states,)
344
+ if self.gradient_checkpointing and self.training:
345
+ layer_outputs = torch.utils.checkpoint.checkpoint(
346
+ encoder_layer,
347
+ hidden_states)
348
+ else:
349
+ layer_outputs = encoder_layer(
350
+ hidden_states,
351
+ )
352
+ hidden_states = layer_outputs
353
+
354
+ if output_hidden_states:
355
+ encoder_states = encoder_states + (hidden_states,)
356
+
357
+ if not return_dict:
358
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
359
+ return BaseModelOutput(
360
+ last_hidden_state=hidden_states, hidden_states=encoder_states
361
+ )
362
+
363
+
364
+ class InternVisionModel(PreTrainedModel):
365
+ main_input_name = 'pixel_values'
366
+ _supports_flash_attn_2 = True
367
+ config_class = InternVisionConfig
368
+ _no_split_modules = ['InternVisionEncoderLayer']
369
+
370
+ def __init__(self, config: InternVisionConfig):
371
+ super().__init__(config)
372
+ self.config = config
373
+
374
+ self.embeddings = InternVisionEmbeddings(config)
375
+ self.encoder = InternVisionEncoder(config)
376
+
377
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
378
+ pos_emb = self.embeddings.position_embedding
379
+ _, num_positions, embed_dim = pos_emb.shape
380
+ cls_emb = pos_emb[:, :1, :]
381
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
382
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
383
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
384
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
385
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
386
+ self.embeddings.image_size = new_size
387
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
388
+
389
+ def get_input_embeddings(self):
390
+ return self.embeddings
391
+
392
+ def forward(
393
+ self,
394
+ pixel_values: Optional[torch.FloatTensor] = None,
395
+ output_hidden_states: Optional[bool] = None,
396
+ return_dict: Optional[bool] = None,
397
+ pixel_embeds: Optional[torch.FloatTensor] = None,
398
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
399
+ output_hidden_states = (
400
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
401
+ )
402
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
403
+
404
+ if pixel_values is None and pixel_embeds is None:
405
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
406
+
407
+ if pixel_embeds is not None:
408
+ hidden_states = pixel_embeds
409
+ else:
410
+ if len(pixel_values.shape) == 4:
411
+ hidden_states = self.embeddings(pixel_values)
412
+ else:
413
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
414
+ encoder_outputs = self.encoder(
415
+ inputs_embeds=hidden_states,
416
+ output_hidden_states=output_hidden_states,
417
+ return_dict=return_dict,
418
+ )
419
+ last_hidden_state = encoder_outputs.last_hidden_state
420
+ pooled_output = last_hidden_state[:, 0, :]
421
+
422
+ if not return_dict:
423
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
424
+
425
+ return BaseModelOutputWithPooling(
426
+ last_hidden_state=last_hidden_state,
427
+ pooler_output=pooled_output,
428
+ hidden_states=encoder_outputs.hidden_states,
429
+ attentions=encoder_outputs.attentions,
430
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1415 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
147
+ class InternLM2RotaryEmbedding(nn.Module):
148
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
149
+ super().__init__()
150
+
151
+ self.dim = dim
152
+ self.max_position_embeddings = max_position_embeddings
153
+ self.base = base
154
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
155
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
156
+
157
+ # Build here to make `torch.jit.trace` work.
158
+ self._set_cos_sin_cache(
159
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
160
+ )
161
+
162
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
163
+ self.max_seq_len_cached = seq_len
164
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
165
+
166
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
167
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
168
+ emb = torch.cat((freqs, freqs), dim=-1)
169
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
170
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
171
+
172
+ def forward(self, x, seq_len=None):
173
+ # x: [bs, num_attention_heads, seq_len, head_size]
174
+ if seq_len > self.max_seq_len_cached:
175
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
176
+
177
+ return (
178
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
179
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
180
+ )
181
+
182
+
183
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
184
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
185
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
186
+
187
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
188
+ self.scaling_factor = scaling_factor
189
+ super().__init__(dim, max_position_embeddings, base, device)
190
+
191
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
192
+ self.max_seq_len_cached = seq_len
193
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
194
+ t = t / self.scaling_factor
195
+
196
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
197
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
198
+ emb = torch.cat((freqs, freqs), dim=-1)
199
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
200
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
201
+
202
+
203
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
204
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
205
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
206
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
207
+ """
208
+
209
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
210
+ self.scaling_factor = scaling_factor
211
+ super().__init__(dim, max_position_embeddings, base, device)
212
+
213
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
214
+ self.max_seq_len_cached = seq_len
215
+
216
+ if seq_len > self.max_position_embeddings:
217
+ base = self.base * (
218
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
219
+ ) ** (self.dim / (self.dim - 2))
220
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
221
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
222
+
223
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
224
+
225
+ freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
227
+ emb = torch.cat((freqs, freqs), dim=-1)
228
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
229
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
230
+
231
+
232
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
233
+ def rotate_half(x):
234
+ """Rotates half the hidden dims of the input."""
235
+ x1 = x[..., : x.shape[-1] // 2]
236
+ x2 = x[..., x.shape[-1] // 2 :]
237
+ return torch.cat((-x2, x1), dim=-1)
238
+
239
+
240
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
241
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
242
+ """Applies Rotary Position Embedding to the query and key tensors."""
243
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
244
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
245
+ q_embed = (q * cos) + (rotate_half(q) * sin)
246
+ k_embed = (k * cos) + (rotate_half(k) * sin)
247
+ return q_embed, k_embed
248
+
249
+
250
+ class InternLM2MLP(nn.Module):
251
+ def __init__(self, config):
252
+ super().__init__()
253
+ self.config = config
254
+ self.hidden_size = config.hidden_size
255
+ self.intermediate_size = config.intermediate_size
256
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
257
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
258
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
259
+ self.act_fn = ACT2FN[config.hidden_act]
260
+
261
+ def forward(self, x):
262
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
263
+
264
+ return down_proj
265
+
266
+
267
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
268
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
269
+ """
270
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
271
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
272
+ """
273
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
274
+ if n_rep == 1:
275
+ return hidden_states
276
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
277
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
278
+
279
+
280
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
281
+ class InternLM2Attention(nn.Module):
282
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
283
+
284
+ def __init__(self, config: InternLM2Config):
285
+ super().__init__()
286
+ self.config = config
287
+ self.hidden_size = config.hidden_size
288
+ self.num_heads = config.num_attention_heads
289
+ self.head_dim = self.hidden_size // self.num_heads
290
+ self.num_key_value_heads = config.num_key_value_heads
291
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
292
+ self.max_position_embeddings = config.max_position_embeddings
293
+ self.is_causal = True
294
+
295
+ if (self.head_dim * self.num_heads) != self.hidden_size:
296
+ raise ValueError(
297
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
298
+ f' and `num_heads`: {self.num_heads}).'
299
+ )
300
+
301
+ self.wqkv = nn.Linear(
302
+ self.hidden_size,
303
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
304
+ bias=config.bias,
305
+ )
306
+
307
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
308
+ self._init_rope()
309
+
310
+ def _init_rope(self):
311
+ if self.config.rope_scaling is None:
312
+ self.rotary_emb = InternLM2RotaryEmbedding(
313
+ self.head_dim,
314
+ max_position_embeddings=self.max_position_embeddings,
315
+ base=self.config.rope_theta,
316
+ )
317
+ else:
318
+ scaling_type = self.config.rope_scaling['type']
319
+ scaling_factor = self.config.rope_scaling['factor']
320
+ if scaling_type == 'dynamic':
321
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
322
+ self.head_dim,
323
+ max_position_embeddings=self.max_position_embeddings,
324
+ base=self.config.rope_theta,
325
+ scaling_factor=scaling_factor,
326
+ )
327
+ elif scaling_type == 'linear':
328
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
329
+ self.head_dim,
330
+ max_position_embeddings=self.max_position_embeddings,
331
+ base=self.config.rope_theta,
332
+ scaling_factor=scaling_factor,
333
+ )
334
+ else:
335
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
336
+ return self.rotary_emb
337
+
338
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
339
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
340
+
341
+ def forward(
342
+ self,
343
+ hidden_states: torch.Tensor,
344
+ attention_mask: Optional[torch.Tensor] = None,
345
+ position_ids: Optional[torch.LongTensor] = None,
346
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
347
+ output_attentions: bool = False,
348
+ use_cache: bool = False,
349
+ **kwargs,
350
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
351
+ if 'padding_mask' in kwargs:
352
+ warnings.warn(
353
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
354
+ 'Please make sure use `attention_mask` instead.`'
355
+ )
356
+
357
+ bsz, q_len, _ = hidden_states.size()
358
+
359
+ qkv_states = self.wqkv(hidden_states)
360
+
361
+ qkv_states = rearrange(
362
+ qkv_states,
363
+ 'b q (h gs d) -> b q h gs d',
364
+ gs=2 + self.num_key_value_groups,
365
+ d=self.head_dim,
366
+ )
367
+
368
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
369
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
370
+ key_states = qkv_states[..., -2, :]
371
+ value_states = qkv_states[..., -1, :]
372
+
373
+ query_states = query_states.transpose(1, 2)
374
+ key_states = key_states.transpose(1, 2)
375
+ value_states = value_states.transpose(1, 2)
376
+
377
+ kv_seq_len = key_states.shape[-2]
378
+ if past_key_value is not None:
379
+ kv_seq_len += past_key_value[0].shape[-2]
380
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
+
383
+ if past_key_value is not None:
384
+ # reuse k, v, self_attention
385
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
386
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
387
+
388
+ past_key_value = (key_states, value_states) if use_cache else None
389
+
390
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
391
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
392
+
393
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
394
+
395
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
396
+ raise ValueError(
397
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
398
+ f' {attn_weights.size()}'
399
+ )
400
+
401
+ if attention_mask is not None:
402
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
403
+ raise ValueError(
404
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
405
+ )
406
+ attn_weights = attn_weights + attention_mask
407
+
408
+ # upcast attention to fp32
409
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
+ attn_output = torch.matmul(attn_weights, value_states)
411
+
412
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
413
+ raise ValueError(
414
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
415
+ f' {attn_output.size()}'
416
+ )
417
+
418
+ attn_output = attn_output.transpose(1, 2).contiguous()
419
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
420
+
421
+ attn_output = self.wo(attn_output)
422
+
423
+ if not output_attentions:
424
+ attn_weights = None
425
+
426
+ return attn_output, attn_weights, past_key_value
427
+
428
+
429
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
430
+ class InternLM2FlashAttention2(InternLM2Attention):
431
+ """
432
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
433
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
434
+ flash attention and deal with padding tokens in case the input contains any of them.
435
+ """
436
+
437
+ def forward(
438
+ self,
439
+ hidden_states: torch.Tensor,
440
+ attention_mask: Optional[torch.LongTensor] = None,
441
+ position_ids: Optional[torch.LongTensor] = None,
442
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
443
+ output_attentions: bool = False,
444
+ use_cache: bool = False,
445
+ **kwargs,
446
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
447
+ # InternLM2FlashAttention2 attention does not support output_attentions
448
+ if 'padding_mask' in kwargs:
449
+ warnings.warn(
450
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
451
+ 'Please make sure use `attention_mask` instead.`'
452
+ )
453
+
454
+ # overwrite attention_mask with padding_mask
455
+ attention_mask = kwargs.pop('padding_mask')
456
+
457
+ output_attentions = False
458
+
459
+ bsz, q_len, _ = hidden_states.size()
460
+
461
+ qkv_states = self.wqkv(hidden_states)
462
+
463
+ qkv_states = rearrange(
464
+ qkv_states,
465
+ 'b q (h gs d) -> b q h gs d',
466
+ gs=2 + self.num_key_value_groups,
467
+ d=self.head_dim,
468
+ )
469
+
470
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
471
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
472
+ key_states = qkv_states[..., -2, :]
473
+ value_states = qkv_states[..., -1, :]
474
+
475
+ query_states = query_states.transpose(1, 2)
476
+ key_states = key_states.transpose(1, 2)
477
+ value_states = value_states.transpose(1, 2)
478
+
479
+ kv_seq_len = key_states.shape[-2]
480
+ if past_key_value is not None:
481
+ kv_seq_len += past_key_value[0].shape[-2]
482
+
483
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
484
+
485
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
486
+
487
+ if past_key_value is not None:
488
+ # reuse k, v, self_attention
489
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
490
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
491
+
492
+ past_key_value = (key_states, value_states) if use_cache else None
493
+
494
+ query_states = query_states.transpose(1, 2)
495
+ key_states = key_states.transpose(1, 2)
496
+ value_states = value_states.transpose(1, 2)
497
+
498
+ attn_output = self._flash_attention_forward(
499
+ query_states, key_states, value_states, attention_mask, q_len
500
+ )
501
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
502
+ attn_output = self.wo(attn_output)
503
+
504
+ if not output_attentions:
505
+ attn_weights = None
506
+
507
+ return attn_output, attn_weights, past_key_value
508
+
509
+ def _flash_attention_forward(
510
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
511
+ ):
512
+ """
513
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
514
+ first unpad the input, then computes the attention scores and pad the final attention scores.
515
+
516
+ Args:
517
+ query_states (`torch.Tensor`):
518
+ Input query states to be passed to Flash Attention API
519
+ key_states (`torch.Tensor`):
520
+ Input key states to be passed to Flash Attention API
521
+ value_states (`torch.Tensor`):
522
+ Input value states to be passed to Flash Attention API
523
+ attention_mask (`torch.Tensor`):
524
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
525
+ position of padding tokens and 1 for the position of non-padding tokens.
526
+ dropout (`int`, *optional*):
527
+ Attention dropout
528
+ softmax_scale (`float`, *optional*):
529
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
530
+ """
531
+ # Contains at least one padding token in the sequence
532
+ causal = self.is_causal and query_length != 1
533
+ if attention_mask is not None:
534
+ batch_size = query_states.shape[0]
535
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
536
+ query_states, key_states, value_states, attention_mask, query_length
537
+ )
538
+
539
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
540
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
541
+
542
+ attn_output_unpad = flash_attn_varlen_func(
543
+ query_states,
544
+ key_states,
545
+ value_states,
546
+ cu_seqlens_q=cu_seqlens_q,
547
+ cu_seqlens_k=cu_seqlens_k,
548
+ max_seqlen_q=max_seqlen_in_batch_q,
549
+ max_seqlen_k=max_seqlen_in_batch_k,
550
+ dropout_p=dropout,
551
+ softmax_scale=softmax_scale,
552
+ causal=causal,
553
+ )
554
+
555
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
556
+ else:
557
+ attn_output = flash_attn_func(
558
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
559
+ )
560
+
561
+ return attn_output
562
+
563
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
564
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
565
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
566
+
567
+ key_layer = index_first_axis(
568
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
569
+ )
570
+ value_layer = index_first_axis(
571
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
572
+ )
573
+
574
+ if query_length == kv_seq_len:
575
+ query_layer = index_first_axis(
576
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
577
+ )
578
+ cu_seqlens_q = cu_seqlens_k
579
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
580
+ indices_q = indices_k
581
+ elif query_length == 1:
582
+ max_seqlen_in_batch_q = 1
583
+ cu_seqlens_q = torch.arange(
584
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
585
+ ) # There is a memcpy here, that is very bad.
586
+ indices_q = cu_seqlens_q[:-1]
587
+ query_layer = query_layer.squeeze(1)
588
+ else:
589
+ # The -q_len: slice assumes left padding.
590
+ attention_mask = attention_mask[:, -query_length:]
591
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
592
+
593
+ return (
594
+ query_layer,
595
+ key_layer,
596
+ value_layer,
597
+ indices_q.to(torch.int64),
598
+ (cu_seqlens_q, cu_seqlens_k),
599
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
600
+ )
601
+
602
+
603
+ INTERNLM2_ATTENTION_CLASSES = {
604
+ 'eager': InternLM2Attention,
605
+ 'flash_attention_2': InternLM2FlashAttention2,
606
+ }
607
+
608
+
609
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
610
+ class InternLM2DecoderLayer(nn.Module):
611
+ def __init__(self, config: InternLM2Config):
612
+ super().__init__()
613
+ self.hidden_size = config.hidden_size
614
+
615
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
616
+
617
+ self.feed_forward = InternLM2MLP(config)
618
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
619
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
620
+
621
+ def forward(
622
+ self,
623
+ hidden_states: torch.Tensor,
624
+ attention_mask: Optional[torch.Tensor] = None,
625
+ position_ids: Optional[torch.LongTensor] = None,
626
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
627
+ output_attentions: Optional[bool] = False,
628
+ use_cache: Optional[bool] = False,
629
+ **kwargs,
630
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
631
+ """
632
+ Args:
633
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
634
+ attention_mask (`torch.FloatTensor`, *optional*):
635
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
636
+ query_sequence_length, key_sequence_length)` if default attention is used.
637
+ output_attentions (`bool`, *optional*):
638
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
639
+ returned tensors for more detail.
640
+ use_cache (`bool`, *optional*):
641
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
642
+ (see `past_key_values`).
643
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
644
+ """
645
+ if 'padding_mask' in kwargs:
646
+ warnings.warn(
647
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
648
+ 'Please make sure use `attention_mask` instead.`'
649
+ )
650
+
651
+ residual = hidden_states
652
+
653
+ hidden_states = self.attention_norm(hidden_states)
654
+
655
+ # Self Attention
656
+ hidden_states, self_attn_weights, present_key_value = self.attention(
657
+ hidden_states=hidden_states,
658
+ attention_mask=attention_mask,
659
+ position_ids=position_ids,
660
+ past_key_value=past_key_value,
661
+ output_attentions=output_attentions,
662
+ use_cache=use_cache,
663
+ **kwargs,
664
+ )
665
+ hidden_states = residual + hidden_states
666
+
667
+ # Fully Connected
668
+ residual = hidden_states
669
+ hidden_states = self.ffn_norm(hidden_states)
670
+ hidden_states = self.feed_forward(hidden_states)
671
+ hidden_states = residual + hidden_states
672
+
673
+ outputs = (hidden_states,)
674
+
675
+ if output_attentions:
676
+ outputs += (self_attn_weights,)
677
+
678
+ if use_cache:
679
+ outputs += (present_key_value,)
680
+
681
+ return outputs
682
+
683
+
684
+ InternLM2_START_DOCSTRING = r"""
685
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
686
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
687
+ etc.)
688
+
689
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
690
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
691
+ and behavior.
692
+
693
+ Parameters:
694
+ config ([`InternLM2Config`]):
695
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
696
+ load the weights associated with the model, only the configuration. Check out the
697
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
698
+ """
699
+
700
+
701
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
702
+ @add_start_docstrings(
703
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
704
+ InternLM2_START_DOCSTRING,
705
+ )
706
+ class InternLM2PreTrainedModel(PreTrainedModel):
707
+ config_class = InternLM2Config
708
+ base_model_prefix = 'model'
709
+ supports_gradient_checkpointing = True
710
+ _no_split_modules = ['InternLM2DecoderLayer']
711
+ _skip_keys_device_placement = 'past_key_values'
712
+ _supports_flash_attn_2 = True
713
+
714
+ def _init_weights(self, module):
715
+ std = self.config.initializer_range
716
+ if isinstance(module, nn.Linear):
717
+ module.weight.data.normal_(mean=0.0, std=std)
718
+ if module.bias is not None:
719
+ module.bias.data.zero_()
720
+ elif isinstance(module, nn.Embedding):
721
+ module.weight.data.normal_(mean=0.0, std=std)
722
+ if module.padding_idx is not None:
723
+ module.weight.data[module.padding_idx].zero_()
724
+
725
+
726
+ InternLM2_INPUTS_DOCSTRING = r"""
727
+ Args:
728
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
729
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
730
+ it.
731
+
732
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
733
+ [`PreTrainedTokenizer.__call__`] for details.
734
+
735
+ [What are input IDs?](../glossary#input-ids)
736
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
738
+
739
+ - 1 for tokens that are **not masked**,
740
+ - 0 for tokens that are **masked**.
741
+
742
+ [What are attention masks?](../glossary#attention-mask)
743
+
744
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
745
+ [`PreTrainedTokenizer.__call__`] for details.
746
+
747
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
748
+ `past_key_values`).
749
+
750
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
751
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
752
+ information on the default strategy.
753
+
754
+ - 1 indicates the head is **not masked**,
755
+ - 0 indicates the head is **masked**.
756
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
757
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
758
+ config.n_positions - 1]`.
759
+
760
+ [What are position IDs?](../glossary#position-ids)
761
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
762
+ when `config.use_cache=True`):
763
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
764
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
765
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
766
+
767
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
768
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
769
+
770
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
771
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
772
+ of shape `(batch_size, sequence_length)`.
773
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
774
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
775
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
776
+ model's internal embedding lookup matrix.
777
+ use_cache (`bool`, *optional*):
778
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
779
+ `past_key_values`).
780
+ output_attentions (`bool`, *optional*):
781
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
782
+ tensors for more detail.
783
+ output_hidden_states (`bool`, *optional*):
784
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
785
+ more detail.
786
+ return_dict (`bool`, *optional*):
787
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
788
+ """
789
+
790
+
791
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
792
+ @add_start_docstrings(
793
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
794
+ InternLM2_START_DOCSTRING,
795
+ )
796
+ class InternLM2Model(InternLM2PreTrainedModel):
797
+ """
798
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
799
+
800
+ Args:
801
+ config: InternLM2Config
802
+ """
803
+
804
+ _auto_class = 'AutoModel'
805
+
806
+ def __init__(self, config: InternLM2Config):
807
+ super().__init__(config)
808
+ self.padding_idx = config.pad_token_id
809
+ self.vocab_size = config.vocab_size
810
+ self.config = config
811
+ if not has_flash_attn:
812
+ self.config.attn_implementation = 'eager'
813
+ print('Warning: Flash attention is not available, using eager attention instead.')
814
+
815
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
816
+
817
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
818
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
819
+
820
+ self.gradient_checkpointing = False
821
+ # Initialize weights and apply final processing
822
+ self.post_init()
823
+
824
+ def get_input_embeddings(self):
825
+ return self.tok_embeddings
826
+
827
+ def set_input_embeddings(self, value):
828
+ self.tok_embeddings = value
829
+
830
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
831
+ # create causal mask
832
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
833
+ combined_attention_mask = None
834
+ if input_shape[-1] > 1:
835
+ combined_attention_mask = _make_causal_mask(
836
+ input_shape,
837
+ inputs_embeds.dtype,
838
+ device=inputs_embeds.device,
839
+ past_key_values_length=past_key_values_length,
840
+ )
841
+
842
+ if attention_mask is not None:
843
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
844
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
845
+ inputs_embeds.device
846
+ )
847
+ combined_attention_mask = (
848
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
849
+ )
850
+
851
+ return combined_attention_mask
852
+
853
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
854
+ def forward(
855
+ self,
856
+ input_ids: torch.LongTensor = None,
857
+ attention_mask: Optional[torch.Tensor] = None,
858
+ position_ids: Optional[torch.LongTensor] = None,
859
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
860
+ inputs_embeds: Optional[torch.FloatTensor] = None,
861
+ use_cache: Optional[bool] = None,
862
+ output_attentions: Optional[bool] = None,
863
+ output_hidden_states: Optional[bool] = None,
864
+ return_dict: Optional[bool] = None,
865
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
866
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
867
+ output_hidden_states = (
868
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
869
+ )
870
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
871
+
872
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
873
+
874
+ if self.config.attn_implementation == 'flash_attention_2':
875
+ _import_flash_attn()
876
+
877
+ # retrieve input_ids and inputs_embeds
878
+ if input_ids is not None and inputs_embeds is not None:
879
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
880
+ elif input_ids is not None:
881
+ batch_size, seq_length = input_ids.shape[:2]
882
+ elif inputs_embeds is not None:
883
+ batch_size, seq_length = inputs_embeds.shape[:2]
884
+ else:
885
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
886
+
887
+ seq_length_with_past = seq_length
888
+ past_key_values_length = 0
889
+ if past_key_values is not None:
890
+ past_key_values_length = past_key_values[0][0].shape[2]
891
+ seq_length_with_past = seq_length_with_past + past_key_values_length
892
+
893
+ if position_ids is None:
894
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
895
+ position_ids = torch.arange(
896
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
897
+ )
898
+ position_ids = position_ids.unsqueeze(0)
899
+
900
+ if inputs_embeds is None:
901
+ inputs_embeds = self.tok_embeddings(input_ids)
902
+
903
+ if self.config.attn_implementation == 'flash_attention_2':
904
+ # 2d mask is passed through the layers
905
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
906
+ else:
907
+ if attention_mask is None:
908
+ attention_mask = torch.ones(
909
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
910
+ )
911
+ attention_mask = self._prepare_decoder_attention_mask(
912
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
913
+ )
914
+
915
+ # embed positions
916
+ hidden_states = inputs_embeds
917
+
918
+ if self.gradient_checkpointing and self.training:
919
+ if use_cache:
920
+ logger.warning_once(
921
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
922
+ )
923
+ use_cache = False
924
+
925
+ # decoder layers
926
+ all_hidden_states = () if output_hidden_states else None
927
+ all_self_attns = () if output_attentions else None
928
+ next_decoder_cache = () if use_cache else None
929
+
930
+ for idx, decoder_layer in enumerate(self.layers):
931
+ if output_hidden_states:
932
+ all_hidden_states += (hidden_states,)
933
+
934
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
935
+
936
+ if self.gradient_checkpointing and self.training:
937
+
938
+ def create_custom_forward(module):
939
+ def custom_forward(*inputs):
940
+ # None for past_key_value
941
+ return module(*inputs, output_attentions, None)
942
+
943
+ return custom_forward
944
+
945
+ layer_outputs = torch.utils.checkpoint.checkpoint(
946
+ create_custom_forward(decoder_layer),
947
+ hidden_states,
948
+ attention_mask,
949
+ position_ids,
950
+ None,
951
+ )
952
+ else:
953
+ layer_outputs = decoder_layer(
954
+ hidden_states,
955
+ attention_mask=attention_mask,
956
+ position_ids=position_ids,
957
+ past_key_value=past_key_value,
958
+ output_attentions=output_attentions,
959
+ use_cache=use_cache,
960
+ )
961
+
962
+ hidden_states = layer_outputs[0]
963
+
964
+ if use_cache:
965
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
966
+
967
+ if output_attentions:
968
+ all_self_attns += (layer_outputs[1],)
969
+
970
+ hidden_states = self.norm(hidden_states)
971
+
972
+ # add hidden states from the last decoder layer
973
+ if output_hidden_states:
974
+ all_hidden_states += (hidden_states,)
975
+
976
+ next_cache = next_decoder_cache if use_cache else None
977
+ if not return_dict:
978
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
979
+ return BaseModelOutputWithPast(
980
+ last_hidden_state=hidden_states,
981
+ past_key_values=next_cache,
982
+ hidden_states=all_hidden_states,
983
+ attentions=all_self_attns,
984
+ )
985
+
986
+
987
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
988
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
989
+ _auto_class = 'AutoModelForCausalLM'
990
+
991
+ _tied_weights_keys = ['output.weight']
992
+
993
+ def __init__(self, config):
994
+ super().__init__(config)
995
+ self.model = InternLM2Model(config)
996
+ self.vocab_size = config.vocab_size
997
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
998
+
999
+ # Initialize weights and apply final processing
1000
+ self.post_init()
1001
+
1002
+ def get_input_embeddings(self):
1003
+ return self.model.tok_embeddings
1004
+
1005
+ def set_input_embeddings(self, value):
1006
+ self.model.tok_embeddings = value
1007
+
1008
+ def get_output_embeddings(self):
1009
+ return self.output
1010
+
1011
+ def set_output_embeddings(self, new_embeddings):
1012
+ self.output = new_embeddings
1013
+
1014
+ def set_decoder(self, decoder):
1015
+ self.model = decoder
1016
+
1017
+ def get_decoder(self):
1018
+ return self.model
1019
+
1020
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1021
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1022
+ def forward(
1023
+ self,
1024
+ input_ids: torch.LongTensor = None,
1025
+ attention_mask: Optional[torch.Tensor] = None,
1026
+ position_ids: Optional[torch.LongTensor] = None,
1027
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1028
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1029
+ labels: Optional[torch.LongTensor] = None,
1030
+ use_cache: Optional[bool] = None,
1031
+ output_attentions: Optional[bool] = None,
1032
+ output_hidden_states: Optional[bool] = None,
1033
+ return_dict: Optional[bool] = None,
1034
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1035
+ r"""
1036
+ Args:
1037
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1038
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1039
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1040
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1041
+
1042
+ Returns:
1043
+
1044
+ Example:
1045
+
1046
+ ```python
1047
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1048
+
1049
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1050
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1051
+
1052
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1053
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1054
+
1055
+ >>> # Generate
1056
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1057
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1058
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1059
+ ```"""
1060
+
1061
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1062
+ output_hidden_states = (
1063
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1064
+ )
1065
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1066
+
1067
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1068
+ outputs = self.model(
1069
+ input_ids=input_ids,
1070
+ attention_mask=attention_mask,
1071
+ position_ids=position_ids,
1072
+ past_key_values=past_key_values,
1073
+ inputs_embeds=inputs_embeds,
1074
+ use_cache=use_cache,
1075
+ output_attentions=output_attentions,
1076
+ output_hidden_states=output_hidden_states,
1077
+ return_dict=return_dict,
1078
+ )
1079
+
1080
+ hidden_states = outputs[0]
1081
+ logits = self.output(hidden_states)
1082
+ logits = logits.float()
1083
+
1084
+ loss = None
1085
+ if labels is not None:
1086
+ # Shift so that tokens < n predict n
1087
+ shift_logits = logits[..., :-1, :].contiguous()
1088
+ shift_labels = labels[..., 1:].contiguous()
1089
+ # Flatten the tokens
1090
+ loss_fct = CrossEntropyLoss()
1091
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1092
+ shift_labels = shift_labels.view(-1)
1093
+ # Enable model parallelism
1094
+ shift_labels = shift_labels.to(shift_logits.device)
1095
+ loss = loss_fct(shift_logits, shift_labels)
1096
+
1097
+ if not return_dict:
1098
+ output = (logits,) + outputs[1:]
1099
+ return (loss,) + output if loss is not None else output
1100
+
1101
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1102
+ output = CausalLMOutputWithPast(
1103
+ loss=loss,
1104
+ logits=logits,
1105
+ past_key_values=outputs.past_key_values,
1106
+ hidden_states=outputs.hidden_states,
1107
+ attentions=outputs.attentions,
1108
+ )
1109
+ output['logits'] = output['logits'].to(device)
1110
+ return output
1111
+
1112
+ def prepare_inputs_for_generation(
1113
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1114
+ ):
1115
+ if past_key_values is not None:
1116
+ past_length = past_key_values[0][0].shape[2]
1117
+
1118
+ # Some generation methods already pass only the last input ID
1119
+ if input_ids.shape[1] > past_length:
1120
+ remove_prefix_length = past_length
1121
+ else:
1122
+ # Default to old behavior: keep only final ID
1123
+ remove_prefix_length = input_ids.shape[1] - 1
1124
+
1125
+ input_ids = input_ids[:, remove_prefix_length:]
1126
+
1127
+ position_ids = kwargs.get('position_ids', None)
1128
+ if attention_mask is not None and position_ids is None:
1129
+ # create position_ids on the fly for batch generation
1130
+ position_ids = attention_mask.long().cumsum(-1) - 1
1131
+ position_ids.masked_fill_(attention_mask == 0, 1)
1132
+ if past_key_values:
1133
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1134
+
1135
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1136
+ if inputs_embeds is not None and past_key_values is None:
1137
+ model_inputs = {'inputs_embeds': inputs_embeds}
1138
+ else:
1139
+ model_inputs = {'input_ids': input_ids}
1140
+
1141
+ model_inputs.update(
1142
+ {
1143
+ 'position_ids': position_ids,
1144
+ 'past_key_values': past_key_values,
1145
+ 'use_cache': kwargs.get('use_cache'),
1146
+ 'attention_mask': attention_mask,
1147
+ }
1148
+ )
1149
+ return model_inputs
1150
+
1151
+ @staticmethod
1152
+ def _reorder_cache(past_key_values, beam_idx):
1153
+ reordered_past = ()
1154
+ for layer_past in past_key_values:
1155
+ reordered_past += (
1156
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1157
+ )
1158
+ return reordered_past
1159
+
1160
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1161
+ if tokenizer.add_bos_token:
1162
+ prompt = ''
1163
+ else:
1164
+ prompt = tokenizer.bos_token
1165
+ if meta_instruction:
1166
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1167
+ for record in history:
1168
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1169
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1170
+ return tokenizer([prompt], return_tensors='pt')
1171
+
1172
+ @torch.no_grad()
1173
+ def chat(
1174
+ self,
1175
+ tokenizer,
1176
+ query: str,
1177
+ history: List[Tuple[str, str]] = [],
1178
+ streamer: Optional[BaseStreamer] = None,
1179
+ max_new_tokens: int = 1024,
1180
+ do_sample: bool = True,
1181
+ temperature: float = 0.8,
1182
+ top_p: float = 0.8,
1183
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1184
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1185
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1186
+ **kwargs,
1187
+ ):
1188
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1189
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1190
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1191
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1192
+ outputs = self.generate(
1193
+ **inputs,
1194
+ streamer=streamer,
1195
+ max_new_tokens=max_new_tokens,
1196
+ do_sample=do_sample,
1197
+ temperature=temperature,
1198
+ top_p=top_p,
1199
+ eos_token_id=eos_token_id,
1200
+ **kwargs,
1201
+ )
1202
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]) :]
1203
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1204
+ response = response.split('<|im_end|>')[0]
1205
+ history = history + [(query, response)]
1206
+ return response, history
1207
+
1208
+ @torch.no_grad()
1209
+ def stream_chat(
1210
+ self,
1211
+ tokenizer,
1212
+ query: str,
1213
+ history: List[Tuple[str, str]] = [],
1214
+ max_new_tokens: int = 1024,
1215
+ do_sample: bool = True,
1216
+ temperature: float = 0.8,
1217
+ top_p: float = 0.8,
1218
+ **kwargs,
1219
+ ):
1220
+ """
1221
+ Return a generator in format: (response, history)
1222
+ Eg.
1223
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1224
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1225
+ """
1226
+ if BaseStreamer is None:
1227
+ raise ModuleNotFoundError(
1228
+ 'The version of `transformers` is too low. Please make sure '
1229
+ 'that you have installed `transformers>=4.28.0`.'
1230
+ )
1231
+
1232
+ response_queue = queue.Queue(maxsize=20)
1233
+
1234
+ class ChatStreamer(BaseStreamer):
1235
+ def __init__(self, tokenizer) -> None:
1236
+ super().__init__()
1237
+ self.tokenizer = tokenizer
1238
+ self.queue = response_queue
1239
+ self.query = query
1240
+ self.history = history
1241
+ self.response = ''
1242
+ self.cache = []
1243
+ self.received_inputs = False
1244
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1245
+
1246
+ def put(self, value):
1247
+ if len(value.shape) > 1 and value.shape[0] > 1:
1248
+ raise ValueError('ChatStreamer only supports batch size 1')
1249
+ elif len(value.shape) > 1:
1250
+ value = value[0]
1251
+
1252
+ if not self.received_inputs:
1253
+ # The first received value is input_ids, ignore here
1254
+ self.received_inputs = True
1255
+ return
1256
+
1257
+ self.cache.extend(value.tolist())
1258
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1259
+ if token.strip() != '<|im_end|>':
1260
+ self.response = self.response + token
1261
+ history = self.history + [(self.query, self.response)]
1262
+ self.queue.put((self.response, history))
1263
+ self.cache = []
1264
+ else:
1265
+ self.end()
1266
+
1267
+ def end(self):
1268
+ self.queue.put(None)
1269
+
1270
+ def stream_producer():
1271
+ return self.chat(
1272
+ tokenizer=tokenizer,
1273
+ query=query,
1274
+ streamer=ChatStreamer(tokenizer=tokenizer),
1275
+ history=history,
1276
+ max_new_tokens=max_new_tokens,
1277
+ do_sample=do_sample,
1278
+ temperature=temperature,
1279
+ top_p=top_p,
1280
+ **kwargs,
1281
+ )
1282
+
1283
+ def consumer():
1284
+ producer = threading.Thread(target=stream_producer)
1285
+ producer.start()
1286
+ while True:
1287
+ res = response_queue.get()
1288
+ if res is None:
1289
+ return
1290
+ yield res
1291
+
1292
+ return consumer()
1293
+
1294
+
1295
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1296
+ @add_start_docstrings(
1297
+ """
1298
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1299
+
1300
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1301
+ as other causal models (e.g. GPT-2) do.
1302
+
1303
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1304
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1305
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1306
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1307
+ each row of the batch).
1308
+ """,
1309
+ InternLM2_START_DOCSTRING,
1310
+ )
1311
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1312
+ def __init__(self, config):
1313
+ super().__init__(config)
1314
+ self.num_labels = config.num_labels
1315
+ self.model = InternLM2Model(config)
1316
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1317
+
1318
+ # Initialize weights and apply final processing
1319
+ self.post_init()
1320
+
1321
+ def get_input_embeddings(self):
1322
+ return self.model.tok_embeddings
1323
+
1324
+ def set_input_embeddings(self, value):
1325
+ self.model.tok_embeddings = value
1326
+
1327
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1328
+ def forward(
1329
+ self,
1330
+ input_ids: torch.LongTensor = None,
1331
+ attention_mask: Optional[torch.Tensor] = None,
1332
+ position_ids: Optional[torch.LongTensor] = None,
1333
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1334
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1335
+ labels: Optional[torch.LongTensor] = None,
1336
+ use_cache: Optional[bool] = None,
1337
+ output_attentions: Optional[bool] = None,
1338
+ output_hidden_states: Optional[bool] = None,
1339
+ return_dict: Optional[bool] = None,
1340
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1341
+ r"""
1342
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1343
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1344
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1345
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1346
+ """
1347
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1348
+
1349
+ transformer_outputs = self.model(
1350
+ input_ids,
1351
+ attention_mask=attention_mask,
1352
+ position_ids=position_ids,
1353
+ past_key_values=past_key_values,
1354
+ inputs_embeds=inputs_embeds,
1355
+ use_cache=use_cache,
1356
+ output_attentions=output_attentions,
1357
+ output_hidden_states=output_hidden_states,
1358
+ return_dict=return_dict,
1359
+ )
1360
+ hidden_states = transformer_outputs[0]
1361
+ logits = self.score(hidden_states)
1362
+
1363
+ if input_ids is not None:
1364
+ batch_size = input_ids.shape[0]
1365
+ else:
1366
+ batch_size = inputs_embeds.shape[0]
1367
+
1368
+ if self.config.pad_token_id is None and batch_size != 1:
1369
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1370
+ if self.config.pad_token_id is None:
1371
+ sequence_lengths = -1
1372
+ else:
1373
+ if input_ids is not None:
1374
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1375
+ logits.device
1376
+ )
1377
+ else:
1378
+ sequence_lengths = -1
1379
+
1380
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1381
+
1382
+ loss = None
1383
+ if labels is not None:
1384
+ labels = labels.to(logits.device)
1385
+ if self.config.problem_type is None:
1386
+ if self.num_labels == 1:
1387
+ self.config.problem_type = 'regression'
1388
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1389
+ self.config.problem_type = 'single_label_classification'
1390
+ else:
1391
+ self.config.problem_type = 'multi_label_classification'
1392
+
1393
+ if self.config.problem_type == 'regression':
1394
+ loss_fct = MSELoss()
1395
+ if self.num_labels == 1:
1396
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1397
+ else:
1398
+ loss = loss_fct(pooled_logits, labels)
1399
+ elif self.config.problem_type == 'single_label_classification':
1400
+ loss_fct = CrossEntropyLoss()
1401
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1402
+ elif self.config.problem_type == 'multi_label_classification':
1403
+ loss_fct = BCEWithLogitsLoss()
1404
+ loss = loss_fct(pooled_logits, labels)
1405
+ if not return_dict:
1406
+ output = (pooled_logits,) + transformer_outputs[1:]
1407
+ return ((loss,) + output) if loss is not None else output
1408
+
1409
+ return SequenceClassifierOutputWithPast(
1410
+ loss=loss,
1411
+ logits=pooled_logits,
1412
+ past_key_values=transformer_outputs.past_key_values,
1413
+ hidden_states=transformer_outputs.hidden_states,
1414
+ attentions=transformer_outputs.attentions,
1415
+ )
openvino_config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "compression": null,
3
+ "dtype": "int4",
4
+ "input_info": null,
5
+ "optimum_version": "1.24.0.dev0",
6
+ "quantization_config": {
7
+ "all_layers": null,
8
+ "backup_precision": null,
9
+ "bits": 4,
10
+ "dataset": "contextual",
11
+ "gptq": null,
12
+ "group_size": 128,
13
+ "ignored_scope": null,
14
+ "lora_correction": null,
15
+ "num_samples": 32,
16
+ "processor": null,
17
+ "quant_method": "awq",
18
+ "ratio": 1.0,
19
+ "scale_estimation": null,
20
+ "sensitivity_metric": null,
21
+ "sym": false,
22
+ "tokenizer": null,
23
+ "trust_remote_code": true,
24
+ "weight_format": "int4"
25
+ },
26
+ "save_onnx_model": false,
27
+ "transformers_version": "4.47.0"
28
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d99982bd38cc642f98134aabf7650a1ce0d28e7978c945c238d7620a8260d29
3
+ size 1477889
openvino_detokenizer.xml ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_259912" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_259912">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Constant_259832" type="Const" version="opset1">
14
+ <data element_type="u8" shape="1477889" offset="0" size="1477889" />
15
+ <output>
16
+ <port id="0" precision="U8">
17
+ <dim>1477889</dim>
18
+ </port>
19
+ </output>
20
+ </layer>
21
+ <layer id="2" name="Convert_259921" type="Convert" version="opset1">
22
+ <data destination_type="i32" />
23
+ <input>
24
+ <port id="0" precision="I64">
25
+ <dim>-1</dim>
26
+ <dim>-1</dim>
27
+ </port>
28
+ </input>
29
+ <output>
30
+ <port id="1" precision="I32">
31
+ <dim>-1</dim>
32
+ <dim>-1</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="SentencepieceDetokenizer_259913" type="SentencepieceDetokenizer" version="extension">
37
+ <input>
38
+ <port id="0" precision="U8">
39
+ <dim>1477889</dim>
40
+ </port>
41
+ <port id="1" precision="I32">
42
+ <dim>-1</dim>
43
+ <dim>-1</dim>
44
+ </port>
45
+ </input>
46
+ <output>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="I32">
51
+ <dim>-1</dim>
52
+ </port>
53
+ <port id="4" precision="U8">
54
+ <dim>-1</dim>
55
+ </port>
56
+ </output>
57
+ </layer>
58
+ <layer id="4" name="UTF8Validate_259914" type="UTF8Validate" version="extension">
59
+ <data replace_mode="true" />
60
+ <input>
61
+ <port id="0" precision="I32">
62
+ <dim>-1</dim>
63
+ </port>
64
+ <port id="1" precision="I32">
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="2" precision="U8">
68
+ <dim>-1</dim>
69
+ </port>
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="I32">
73
+ <dim>-1</dim>
74
+ </port>
75
+ <port id="4" precision="I32">
76
+ <dim>-1</dim>
77
+ </port>
78
+ <port id="5" precision="U8">
79
+ <dim>-1</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="5" name="StringTensorPack_259915" type="StringTensorPack" version="opset15">
84
+ <input>
85
+ <port id="0" precision="I32">
86
+ <dim>-1</dim>
87
+ </port>
88
+ <port id="1" precision="I32">
89
+ <dim>-1</dim>
90
+ </port>
91
+ <port id="2" precision="U8">
92
+ <dim>-1</dim>
93
+ </port>
94
+ </input>
95
+ <output>
96
+ <port id="3" precision="STRING" names="string_output">
97
+ <dim>-1</dim>
98
+ </port>
99
+ </output>
100
+ </layer>
101
+ <layer id="6" name="Result_259916" type="Result" version="opset1">
102
+ <input>
103
+ <port id="0" precision="STRING">
104
+ <dim>-1</dim>
105
+ </port>
106
+ </input>
107
+ </layer>
108
+ </layers>
109
+ <edges>
110
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
111
+ <edge from-layer="1" from-port="0" to-layer="3" to-port="0" />
112
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
113
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="0" />
114
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="1" />
115
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="2" />
116
+ <edge from-layer="4" from-port="3" to-layer="5" to-port="0" />
117
+ <edge from-layer="4" from-port="4" to-layer="5" to-port="1" />
118
+ <edge from-layer="4" from-port="5" to-layer="5" to-port="2" />
119
+ <edge from-layer="5" from-port="3" to-layer="6" to-port="0" />
120
+ </edges>
121
+ <rt_info>
122
+ <add_attention_mask value="True" />
123
+ <add_prefix_space />
124
+ <add_special_tokens value="True" />
125
+ <bos_token_id value="1" />
126
+ <chat_template value="{{ bos_token }}{% for message in messages %}{{'&lt;|im_start|>' + message['role'] + '&#10;' + message['content'] + '&lt;|im_end|>' + '&#10;'}}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|im_start|>assistant&#10;' }}{% endif %}" />
127
+ <clean_up_tokenization_spaces value="False" />
128
+ <detokenizer_input_type value="i64" />
129
+ <eos_token_id value="2" />
130
+ <handle_special_tokens_with_re value="True" />
131
+ <number_of_inputs value="1" />
132
+ <openvino_tokenizers_version value="2025.0.0.0-471-7f2ac4f9648" />
133
+ <openvino_version value="2025.0.0-17908-513dcc5c7b7-releases/2025/0" />
134
+ <original_tokenizer_class value="&lt;class 'transformers_modules.OpenGVLab.InternVL2-2B.aec61df8c99ba7c81271877485e038a7b823a399.tokenization_internlm2.InternLM2Tokenizer'>" />
135
+ <pad_token_id value="2" />
136
+ <sentencepiece_version value="0.2.0" />
137
+ <skip_special_tokens value="True" />
138
+ <streaming_detokenizer value="False" />
139
+ <tiktoken_version value="0.7.0" />
140
+ <tokenizer_output_type value="i64" />
141
+ <tokenizers_version value="0.21.0" />
142
+ <transformers_version value="4.47.0" />
143
+ <use_max_padding value="False" />
144
+ <use_sentencepiece_backend value="False" />
145
+ <utf8_replace_mode value="replace" />
146
+ <with_detokenizer value="True" />
147
+ </rt_info>
148
+ </net>
openvino_language_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67d901664a9b8ce1470157eb412e10e8a54ae101ed358d4c090fc6597eb0811e
3
+ size 1025025507
openvino_language_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_text_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebdb511e3d90fc6560bf49883ecead8f05562d83311fdcc806f464b6bed82fc6
3
+ size 189733654
openvino_text_embeddings_model.xml ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="Model6" version="11">
3
+ <layers>
4
+ <layer id="0" name="input" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="input">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="self.weight" type="Const" version="opset1">
14
+ <data element_type="i8" shape="92553, 2048" offset="0" size="189548544" />
15
+ <output>
16
+ <port id="0" precision="I8">
17
+ <dim>92553</dim>
18
+ <dim>2048</dim>
19
+ </port>
20
+ </output>
21
+ </layer>
22
+ <layer id="2" name="Convert_253933" type="Convert" version="opset1">
23
+ <data destination_type="f16" />
24
+ <input>
25
+ <port id="0" precision="I8">
26
+ <dim>92553</dim>
27
+ <dim>2048</dim>
28
+ </port>
29
+ </input>
30
+ <output>
31
+ <port id="1" precision="FP16">
32
+ <dim>92553</dim>
33
+ <dim>2048</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="self.weight/scale" type="Const" version="opset1">
38
+ <data element_type="f16" shape="92553, 1" offset="189548544" size="185106" />
39
+ <output>
40
+ <port id="0" precision="FP16">
41
+ <dim>92553</dim>
42
+ <dim>1</dim>
43
+ </port>
44
+ </output>
45
+ </layer>
46
+ <layer id="4" name="self.weight/fq_weights_0" type="Multiply" version="opset1">
47
+ <data auto_broadcast="numpy" />
48
+ <input>
49
+ <port id="0" precision="FP16">
50
+ <dim>92553</dim>
51
+ <dim>2048</dim>
52
+ </port>
53
+ <port id="1" precision="FP16">
54
+ <dim>92553</dim>
55
+ <dim>1</dim>
56
+ </port>
57
+ </input>
58
+ <output>
59
+ <port id="2" precision="FP16">
60
+ <dim>92553</dim>
61
+ <dim>2048</dim>
62
+ </port>
63
+ </output>
64
+ </layer>
65
+ <layer id="5" name="self.weight/fq_weights_0/convert" type="Convert" version="opset1">
66
+ <data destination_type="f32" />
67
+ <input>
68
+ <port id="0" precision="FP16">
69
+ <dim>92553</dim>
70
+ <dim>2048</dim>
71
+ </port>
72
+ </input>
73
+ <output>
74
+ <port id="1" precision="FP32">
75
+ <dim>92553</dim>
76
+ <dim>2048</dim>
77
+ </port>
78
+ </output>
79
+ </layer>
80
+ <layer id="6" name="aten::embedding/Convert" type="Convert" version="opset1">
81
+ <data destination_type="i32" />
82
+ <input>
83
+ <port id="0" precision="I64">
84
+ <dim>-1</dim>
85
+ <dim>-1</dim>
86
+ </port>
87
+ </input>
88
+ <output>
89
+ <port id="1" precision="I32">
90
+ <dim>-1</dim>
91
+ <dim>-1</dim>
92
+ </port>
93
+ </output>
94
+ </layer>
95
+ <layer id="7" name="aten::embedding/Constant" type="Const" version="opset1">
96
+ <data element_type="i32" shape="" offset="189733650" size="4" />
97
+ <output>
98
+ <port id="0" precision="I32" />
99
+ </output>
100
+ </layer>
101
+ <layer id="8" name="aten::embedding/Gather" type="Gather" version="opset8">
102
+ <data batch_dims="0" />
103
+ <input>
104
+ <port id="0" precision="FP32">
105
+ <dim>92553</dim>
106
+ <dim>2048</dim>
107
+ </port>
108
+ <port id="1" precision="I32">
109
+ <dim>-1</dim>
110
+ <dim>-1</dim>
111
+ </port>
112
+ <port id="2" precision="I32" />
113
+ </input>
114
+ <output>
115
+ <port id="3" precision="FP32" names="inputs_embeds">
116
+ <dim>-1</dim>
117
+ <dim>-1</dim>
118
+ <dim>2048</dim>
119
+ </port>
120
+ </output>
121
+ </layer>
122
+ <layer id="9" name="Result_172414" type="Result" version="opset1">
123
+ <input>
124
+ <port id="0" precision="FP32">
125
+ <dim>-1</dim>
126
+ <dim>-1</dim>
127
+ <dim>2048</dim>
128
+ </port>
129
+ </input>
130
+ </layer>
131
+ </layers>
132
+ <edges>
133
+ <edge from-layer="0" from-port="0" to-layer="6" to-port="0" />
134
+ <edge from-layer="1" from-port="0" to-layer="2" to-port="0" />
135
+ <edge from-layer="2" from-port="1" to-layer="4" to-port="0" />
136
+ <edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
137
+ <edge from-layer="4" from-port="2" to-layer="5" to-port="0" />
138
+ <edge from-layer="5" from-port="1" to-layer="8" to-port="0" />
139
+ <edge from-layer="6" from-port="1" to-layer="8" to-port="1" />
140
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
141
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
142
+ </edges>
143
+ <rt_info>
144
+ <Runtime_version value="2025.0.0-17908-513dcc5c7b7-releases/2025/0" />
145
+ <conversion_parameters>
146
+ <framework value="pytorch" />
147
+ <is_python_object value="True" />
148
+ </conversion_parameters>
149
+ <nncf>
150
+ <friendly_names_were_updated value="True" />
151
+ <weight_compression>
152
+ <advanced_parameters value="{'statistics_path': None, 'awq_params': {'subset_size': 32, 'percent_to_apply': 0.002, 'alpha_min': 0.0, 'alpha_max': 1.0, 'steps': 100}, 'scale_estimation_params': {'subset_size': 64, 'initial_steps': 5, 'scale_steps': 5, 'weight_penalty': -1.0}, 'gptq_params': {'damp_percent': 0.1, 'block_size': 128, 'subset_size': 128}, 'lora_correction_params': {'adapter_rank': 8, 'num_iterations': 3, 'apply_regularization': True, 'subset_size': 128, 'use_int8_adapters': True}}" />
153
+ <all_layers value="False" />
154
+ <awq value="False" />
155
+ <backup_mode value="int8_asym" />
156
+ <gptq value="False" />
157
+ <group_size value="-1" />
158
+ <ignored_scope value="[]" />
159
+ <lora_correction value="False" />
160
+ <mode value="int8_sym" />
161
+ <ratio value="1.0" />
162
+ <scale_estimation value="False" />
163
+ <sensitivity_metric value="weight_quantization_error" />
164
+ </weight_compression>
165
+ </nncf>
166
+ <optimum>
167
+ <optimum_intel_version value="1.22.0.dev0+2b0d642" />
168
+ <optimum_version value="1.24.0.dev0" />
169
+ <pytorch_version value="2.5.1+cpu" />
170
+ <transformers_version value="4.47.0" />
171
+ </optimum>
172
+ </rt_info>
173
+ </net>
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fad8c0beff6594baa96a3708212fa756d46ac7237933c590c3565dc120cb4eb
3
+ size 1478345
openvino_tokenizer.xml ADDED
@@ -0,0 +1,1025 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="string_input" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="string_input">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_259890" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_259831" type="Const" version="opset1">
19
+ <data element_type="u8" shape="1477889" offset="4" size="1477889" />
20
+ <output>
21
+ <port id="0" precision="U8">
22
+ <dim>1477889</dim>
23
+ </port>
24
+ </output>
25
+ </layer>
26
+ <layer id="3" name="Constant_259835" type="Const" version="opset1">
27
+ <data element_type="i32" shape="18" offset="1477893" size="72" />
28
+ <output>
29
+ <port id="0" precision="I32">
30
+ <dim>18</dim>
31
+ </port>
32
+ </output>
33
+ </layer>
34
+ <layer id="4" name="Constant_259837" type="Const" version="opset1">
35
+ <data element_type="i32" shape="18" offset="1477965" size="72" />
36
+ <output>
37
+ <port id="0" precision="I32">
38
+ <dim>18</dim>
39
+ </port>
40
+ </output>
41
+ </layer>
42
+ <layer id="5" name="Constant_259839" type="Const" version="opset1">
43
+ <data element_type="u8" shape="148" offset="1478037" size="148" />
44
+ <output>
45
+ <port id="0" precision="U8">
46
+ <dim>148</dim>
47
+ </port>
48
+ </output>
49
+ </layer>
50
+ <layer id="6" name="Constant_259840" type="Const" version="opset1">
51
+ <data element_type="i32" shape="18" offset="1478185" size="72" />
52
+ <output>
53
+ <port id="0" precision="I32">
54
+ <dim>18</dim>
55
+ </port>
56
+ </output>
57
+ </layer>
58
+ <layer id="7" name="SentencepieceTokenizer_259841" type="SentencepieceTokenizer" version="extension">
59
+ <data nbest_size="0" alpha="0" add_bos="false" add_eos="false" reverse="false" />
60
+ <input>
61
+ <port id="0" precision="U8">
62
+ <dim>1477889</dim>
63
+ </port>
64
+ <port id="1" precision="STRING">
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="2" precision="I32">
68
+ <dim>18</dim>
69
+ </port>
70
+ <port id="3" precision="I32">
71
+ <dim>18</dim>
72
+ </port>
73
+ <port id="4" precision="U8">
74
+ <dim>148</dim>
75
+ </port>
76
+ <port id="5" precision="I32">
77
+ <dim>18</dim>
78
+ </port>
79
+ </input>
80
+ <output>
81
+ <port id="6" precision="I64">
82
+ <dim>-1</dim>
83
+ <dim>2</dim>
84
+ </port>
85
+ <port id="7" precision="I32">
86
+ <dim>-1</dim>
87
+ </port>
88
+ <port id="8" precision="I64">
89
+ <dim>2</dim>
90
+ </port>
91
+ </output>
92
+ </layer>
93
+ <layer id="8" name="Constant_259850" type="Const" version="opset1">
94
+ <data element_type="i64" shape="2" offset="1478257" size="16" />
95
+ <output>
96
+ <port id="0" precision="I64">
97
+ <dim>2</dim>
98
+ </port>
99
+ </output>
100
+ </layer>
101
+ <layer id="9" name="Convert_259851" type="Convert" version="opset1">
102
+ <data destination_type="i64" />
103
+ <input>
104
+ <port id="0" precision="I64">
105
+ <dim>2</dim>
106
+ </port>
107
+ </input>
108
+ <output>
109
+ <port id="1" precision="I64">
110
+ <dim>2</dim>
111
+ </port>
112
+ </output>
113
+ </layer>
114
+ <layer id="10" name="Add_259852" type="Add" version="opset1">
115
+ <data auto_broadcast="numpy" />
116
+ <input>
117
+ <port id="0" precision="I64">
118
+ <dim>2</dim>
119
+ </port>
120
+ <port id="1" precision="I64">
121
+ <dim>2</dim>
122
+ </port>
123
+ </input>
124
+ <output>
125
+ <port id="2" precision="I64">
126
+ <dim>2</dim>
127
+ </port>
128
+ </output>
129
+ </layer>
130
+ <layer id="11" name="Constant_259857" type="Const" version="opset1">
131
+ <data element_type="i64" shape="1" offset="1478273" size="8" />
132
+ <output>
133
+ <port id="0" precision="I64">
134
+ <dim>1</dim>
135
+ </port>
136
+ </output>
137
+ </layer>
138
+ <layer id="12" name="Constant_259858" type="Const" version="opset1">
139
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
140
+ <output>
141
+ <port id="0" precision="I64">
142
+ <dim>1</dim>
143
+ </port>
144
+ </output>
145
+ </layer>
146
+ <layer id="13" name="Constant_259859" type="Const" version="opset1">
147
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
148
+ <output>
149
+ <port id="0" precision="I64">
150
+ <dim>1</dim>
151
+ </port>
152
+ </output>
153
+ </layer>
154
+ <layer id="14" name="Constant_259861" type="Const" version="opset1">
155
+ <data element_type="i64" shape="1" offset="1478273" size="8" />
156
+ <output>
157
+ <port id="0" precision="I64">
158
+ <dim>1</dim>
159
+ </port>
160
+ </output>
161
+ </layer>
162
+ <layer id="15" name="Slice_259860" type="Slice" version="opset8">
163
+ <input>
164
+ <port id="0" precision="I64">
165
+ <dim>2</dim>
166
+ </port>
167
+ <port id="1" precision="I64">
168
+ <dim>1</dim>
169
+ </port>
170
+ <port id="2" precision="I64">
171
+ <dim>1</dim>
172
+ </port>
173
+ <port id="3" precision="I64">
174
+ <dim>1</dim>
175
+ </port>
176
+ <port id="4" precision="I64">
177
+ <dim>1</dim>
178
+ </port>
179
+ </input>
180
+ <output>
181
+ <port id="5" precision="I64">
182
+ <dim>1</dim>
183
+ </port>
184
+ </output>
185
+ </layer>
186
+ <layer id="16" name="Constant_259891" type="Const" version="opset1">
187
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
188
+ <output>
189
+ <port id="0" precision="I64">
190
+ <dim>1</dim>
191
+ </port>
192
+ </output>
193
+ </layer>
194
+ <layer id="17" name="Concat_259892" type="Concat" version="opset1">
195
+ <data axis="0" />
196
+ <input>
197
+ <port id="0" precision="I64">
198
+ <dim>1</dim>
199
+ </port>
200
+ <port id="1" precision="I64">
201
+ <dim>1</dim>
202
+ </port>
203
+ </input>
204
+ <output>
205
+ <port id="2" precision="I64">
206
+ <dim>2</dim>
207
+ </port>
208
+ </output>
209
+ </layer>
210
+ <layer id="18" name="Broadcast_259893" type="Broadcast" version="opset3">
211
+ <data mode="numpy" />
212
+ <input>
213
+ <port id="0" precision="I32" />
214
+ <port id="1" precision="I64">
215
+ <dim>2</dim>
216
+ </port>
217
+ </input>
218
+ <output>
219
+ <port id="2" precision="I32">
220
+ <dim>-1</dim>
221
+ <dim>1</dim>
222
+ </port>
223
+ </output>
224
+ </layer>
225
+ <layer id="19" name="Constant_259842" type="Const" version="opset1">
226
+ <data element_type="i32" shape="" offset="1478289" size="4" />
227
+ <output>
228
+ <port id="0" precision="I32" />
229
+ </output>
230
+ </layer>
231
+ <layer id="20" name="Broadcast_259843" type="Broadcast" version="opset3">
232
+ <data mode="numpy" />
233
+ <input>
234
+ <port id="0" precision="I32" />
235
+ <port id="1" precision="I64">
236
+ <dim>2</dim>
237
+ </port>
238
+ </input>
239
+ <output>
240
+ <port id="2" precision="I32">
241
+ <dim>-1</dim>
242
+ <dim>-1</dim>
243
+ </port>
244
+ </output>
245
+ </layer>
246
+ <layer id="21" name="Constant_259844" type="Const" version="opset1">
247
+ <data element_type="i32" shape="" offset="0" size="4" />
248
+ <output>
249
+ <port id="0" precision="I32" />
250
+ </output>
251
+ </layer>
252
+ <layer id="22" name="ShapeOf_259845" type="ShapeOf" version="opset3">
253
+ <data output_type="i64" />
254
+ <input>
255
+ <port id="0" precision="I32">
256
+ <dim>-1</dim>
257
+ </port>
258
+ </input>
259
+ <output>
260
+ <port id="1" precision="I64">
261
+ <dim>1</dim>
262
+ </port>
263
+ </output>
264
+ </layer>
265
+ <layer id="23" name="Broadcast_259846" type="Broadcast" version="opset3">
266
+ <data mode="numpy" />
267
+ <input>
268
+ <port id="0" precision="I32" />
269
+ <port id="1" precision="I64">
270
+ <dim>1</dim>
271
+ </port>
272
+ </input>
273
+ <output>
274
+ <port id="2" precision="I32">
275
+ <dim>-1</dim>
276
+ </port>
277
+ </output>
278
+ </layer>
279
+ <layer id="24" name="ScatterNDUpdate_259849" type="ScatterNDUpdate" version="opset4">
280
+ <input>
281
+ <port id="0" precision="I32">
282
+ <dim>-1</dim>
283
+ <dim>-1</dim>
284
+ </port>
285
+ <port id="1" precision="I64">
286
+ <dim>-1</dim>
287
+ <dim>2</dim>
288
+ </port>
289
+ <port id="2" precision="I32">
290
+ <dim>-1</dim>
291
+ </port>
292
+ </input>
293
+ <output>
294
+ <port id="3" precision="I32">
295
+ <dim>-1</dim>
296
+ <dim>-1</dim>
297
+ </port>
298
+ </output>
299
+ </layer>
300
+ <layer id="25" name="Concat_259894" type="Concat" version="opset1">
301
+ <data axis="1" />
302
+ <input>
303
+ <port id="0" precision="I32">
304
+ <dim>-1</dim>
305
+ <dim>1</dim>
306
+ </port>
307
+ <port id="1" precision="I32">
308
+ <dim>-1</dim>
309
+ <dim>-1</dim>
310
+ </port>
311
+ </input>
312
+ <output>
313
+ <port id="2" precision="I32">
314
+ <dim>-1</dim>
315
+ <dim>-1</dim>
316
+ </port>
317
+ </output>
318
+ </layer>
319
+ <layer id="26" name="Constant_259903" type="Const" version="opset1">
320
+ <data element_type="i64" shape="1" offset="1478273" size="8" />
321
+ <output>
322
+ <port id="0" precision="I64">
323
+ <dim>1</dim>
324
+ </port>
325
+ </output>
326
+ </layer>
327
+ <layer id="27" name="Constant_259904" type="Const" version="opset1">
328
+ <data element_type="i64" shape="1" offset="1478293" size="8" />
329
+ <output>
330
+ <port id="0" precision="I64">
331
+ <dim>1</dim>
332
+ </port>
333
+ </output>
334
+ </layer>
335
+ <layer id="28" name="Constant_259905" type="Const" version="opset1">
336
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
337
+ <output>
338
+ <port id="0" precision="I64">
339
+ <dim>1</dim>
340
+ </port>
341
+ </output>
342
+ </layer>
343
+ <layer id="29" name="Constant_259906" type="Const" version="opset1">
344
+ <data element_type="i64" shape="1" offset="1478301" size="8" />
345
+ <output>
346
+ <port id="0" precision="I64">
347
+ <dim>1</dim>
348
+ </port>
349
+ </output>
350
+ </layer>
351
+ <layer id="30" name="Slice_259907" type="Slice" version="opset8">
352
+ <input>
353
+ <port id="0" precision="I32">
354
+ <dim>-1</dim>
355
+ <dim>-1</dim>
356
+ </port>
357
+ <port id="1" precision="I64">
358
+ <dim>1</dim>
359
+ </port>
360
+ <port id="2" precision="I64">
361
+ <dim>1</dim>
362
+ </port>
363
+ <port id="3" precision="I64">
364
+ <dim>1</dim>
365
+ </port>
366
+ <port id="4" precision="I64">
367
+ <dim>1</dim>
368
+ </port>
369
+ </input>
370
+ <output>
371
+ <port id="5" precision="I32">
372
+ <dim>-1</dim>
373
+ <dim>-1</dim>
374
+ </port>
375
+ </output>
376
+ </layer>
377
+ <layer id="31" name="Slice_259907.0" type="Convert" version="opset1">
378
+ <data destination_type="i64" />
379
+ <input>
380
+ <port id="0" precision="I32">
381
+ <dim>-1</dim>
382
+ <dim>-1</dim>
383
+ </port>
384
+ </input>
385
+ <output>
386
+ <port id="1" precision="I64" names="attention_mask">
387
+ <dim>-1</dim>
388
+ <dim>-1</dim>
389
+ </port>
390
+ </output>
391
+ </layer>
392
+ <layer id="33" name="Constant_259895" type="Const" version="opset1">
393
+ <data element_type="i32" shape="" offset="1478309" size="4" />
394
+ <output>
395
+ <port id="0" precision="I32" />
396
+ </output>
397
+ </layer>
398
+ <layer id="34" name="Broadcast_259896" type="Broadcast" version="opset3">
399
+ <data mode="bidirectional" />
400
+ <input>
401
+ <port id="0" precision="I32" />
402
+ <port id="1" precision="I64">
403
+ <dim>2</dim>
404
+ </port>
405
+ </input>
406
+ <output>
407
+ <port id="2" precision="I32">
408
+ <dim>-1</dim>
409
+ <dim>-1</dim>
410
+ </port>
411
+ </output>
412
+ </layer>
413
+ <layer id="35" name="Add_259885" type="Add" version="opset1">
414
+ <data auto_broadcast="numpy" />
415
+ <input>
416
+ <port id="0" precision="I64">
417
+ <dim>-1</dim>
418
+ <dim>2</dim>
419
+ </port>
420
+ <port id="1" precision="I64">
421
+ <dim>2</dim>
422
+ </port>
423
+ </input>
424
+ <output>
425
+ <port id="2" precision="I64">
426
+ <dim>-1</dim>
427
+ <dim>2</dim>
428
+ </port>
429
+ </output>
430
+ </layer>
431
+ <layer id="36" name="Constant_259872" type="Const" version="opset1">
432
+ <data element_type="i64" shape="" offset="1478273" size="8" />
433
+ <output>
434
+ <port id="0" precision="I64" />
435
+ </output>
436
+ </layer>
437
+ <layer id="37" name="Constant_259854" type="Const" version="opset1">
438
+ <data element_type="i64" shape="" offset="1478273" size="8" />
439
+ <output>
440
+ <port id="0" precision="I64" />
441
+ </output>
442
+ </layer>
443
+ <layer id="38" name="Constant_259855" type="Const" version="opset1">
444
+ <data element_type="i64" shape="" offset="1478273" size="8" />
445
+ <output>
446
+ <port id="0" precision="I64" />
447
+ </output>
448
+ </layer>
449
+ <layer id="39" name="Gather_259856" type="Gather" version="opset8">
450
+ <data batch_dims="0" />
451
+ <input>
452
+ <port id="0" precision="I64">
453
+ <dim>2</dim>
454
+ </port>
455
+ <port id="1" precision="I64" />
456
+ <port id="2" precision="I64" />
457
+ </input>
458
+ <output>
459
+ <port id="3" precision="I64" />
460
+ </output>
461
+ </layer>
462
+ <layer id="40" name="Constant_259873" type="Const" version="opset1">
463
+ <data element_type="i64" shape="" offset="1478281" size="8" />
464
+ <output>
465
+ <port id="0" precision="I64" />
466
+ </output>
467
+ </layer>
468
+ <layer id="41" name="Range_259874" type="Range" version="opset4">
469
+ <data output_type="i64" />
470
+ <input>
471
+ <port id="0" precision="I64" />
472
+ <port id="1" precision="I64" />
473
+ <port id="2" precision="I64" />
474
+ </input>
475
+ <output>
476
+ <port id="3" precision="I64">
477
+ <dim>-1</dim>
478
+ </port>
479
+ </output>
480
+ </layer>
481
+ <layer id="42" name="Constant_259875" type="Const" version="opset1">
482
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
483
+ <output>
484
+ <port id="0" precision="I64">
485
+ <dim>1</dim>
486
+ </port>
487
+ </output>
488
+ </layer>
489
+ <layer id="43" name="Concat_259876" type="Concat" version="opset1">
490
+ <data axis="0" />
491
+ <input>
492
+ <port id="0" precision="I64">
493
+ <dim>1</dim>
494
+ </port>
495
+ <port id="1" precision="I64">
496
+ <dim>1</dim>
497
+ </port>
498
+ </input>
499
+ <output>
500
+ <port id="2" precision="I64">
501
+ <dim>2</dim>
502
+ </port>
503
+ </output>
504
+ </layer>
505
+ <layer id="44" name="Broadcast_259877" type="Broadcast" version="opset3">
506
+ <data mode="bidirectional" />
507
+ <input>
508
+ <port id="0" precision="I64">
509
+ <dim>-1</dim>
510
+ </port>
511
+ <port id="1" precision="I64">
512
+ <dim>2</dim>
513
+ </port>
514
+ </input>
515
+ <output>
516
+ <port id="2" precision="I64">
517
+ <dim>1</dim>
518
+ <dim>-1</dim>
519
+ </port>
520
+ </output>
521
+ </layer>
522
+ <layer id="45" name="Constant_259878" type="Const" version="opset1">
523
+ <data element_type="i64" shape="2" offset="1478313" size="16" />
524
+ <output>
525
+ <port id="0" precision="I64">
526
+ <dim>2</dim>
527
+ </port>
528
+ </output>
529
+ </layer>
530
+ <layer id="46" name="Transpose_259879" type="Transpose" version="opset1">
531
+ <input>
532
+ <port id="0" precision="I64">
533
+ <dim>1</dim>
534
+ <dim>-1</dim>
535
+ </port>
536
+ <port id="1" precision="I64">
537
+ <dim>2</dim>
538
+ </port>
539
+ </input>
540
+ <output>
541
+ <port id="2" precision="I64">
542
+ <dim>-1</dim>
543
+ <dim>1</dim>
544
+ </port>
545
+ </output>
546
+ </layer>
547
+ <layer id="47" name="Constant_259880" type="Const" version="opset1">
548
+ <data element_type="i64" shape="2" offset="1478329" size="16" />
549
+ <output>
550
+ <port id="0" precision="I64">
551
+ <dim>2</dim>
552
+ </port>
553
+ </output>
554
+ </layer>
555
+ <layer id="48" name="Reshape_259881" type="Reshape" version="opset1">
556
+ <data special_zero="false" />
557
+ <input>
558
+ <port id="0" precision="I64">
559
+ <dim>-1</dim>
560
+ <dim>1</dim>
561
+ </port>
562
+ <port id="1" precision="I64">
563
+ <dim>2</dim>
564
+ </port>
565
+ </input>
566
+ <output>
567
+ <port id="2" precision="I64">
568
+ <dim>-1</dim>
569
+ <dim>1</dim>
570
+ </port>
571
+ </output>
572
+ </layer>
573
+ <layer id="49" name="Constant_259868" type="Const" version="opset1">
574
+ <data element_type="i64" shape="" offset="1478273" size="8" />
575
+ <output>
576
+ <port id="0" precision="I64" />
577
+ </output>
578
+ </layer>
579
+ <layer id="50" name="Constant_259869" type="Const" version="opset1">
580
+ <data element_type="i64" shape="" offset="1478281" size="8" />
581
+ <output>
582
+ <port id="0" precision="I64" />
583
+ </output>
584
+ </layer>
585
+ <layer id="51" name="Constant_259870" type="Const" version="opset1">
586
+ <data element_type="i64" shape="" offset="1478281" size="8" />
587
+ <output>
588
+ <port id="0" precision="I64" />
589
+ </output>
590
+ </layer>
591
+ <layer id="52" name="Range_259871" type="Range" version="opset4">
592
+ <data output_type="i64" />
593
+ <input>
594
+ <port id="0" precision="I64" />
595
+ <port id="1" precision="I64" />
596
+ <port id="2" precision="I64" />
597
+ </input>
598
+ <output>
599
+ <port id="3" precision="I64">
600
+ <dim>1</dim>
601
+ </port>
602
+ </output>
603
+ </layer>
604
+ <layer id="53" name="Constant_259882" type="Const" version="opset1">
605
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
606
+ <output>
607
+ <port id="0" precision="I64">
608
+ <dim>1</dim>
609
+ </port>
610
+ </output>
611
+ </layer>
612
+ <layer id="54" name="Concat_259883" type="Concat" version="opset1">
613
+ <data axis="0" />
614
+ <input>
615
+ <port id="0" precision="I64">
616
+ <dim>1</dim>
617
+ </port>
618
+ <port id="1" precision="I64">
619
+ <dim>1</dim>
620
+ </port>
621
+ </input>
622
+ <output>
623
+ <port id="2" precision="I64">
624
+ <dim>2</dim>
625
+ </port>
626
+ </output>
627
+ </layer>
628
+ <layer id="55" name="Broadcast_259884" type="Broadcast" version="opset3">
629
+ <data mode="bidirectional" />
630
+ <input>
631
+ <port id="0" precision="I64">
632
+ <dim>1</dim>
633
+ </port>
634
+ <port id="1" precision="I64">
635
+ <dim>2</dim>
636
+ </port>
637
+ </input>
638
+ <output>
639
+ <port id="2" precision="I64">
640
+ <dim>-1</dim>
641
+ <dim>1</dim>
642
+ </port>
643
+ </output>
644
+ </layer>
645
+ <layer id="56" name="Constant_259886" type="Const" version="opset1">
646
+ <data element_type="i64" shape="2" offset="1478329" size="16" />
647
+ <output>
648
+ <port id="0" precision="I64">
649
+ <dim>2</dim>
650
+ </port>
651
+ </output>
652
+ </layer>
653
+ <layer id="57" name="Reshape_259887" type="Reshape" version="opset1">
654
+ <data special_zero="false" />
655
+ <input>
656
+ <port id="0" precision="I64">
657
+ <dim>-1</dim>
658
+ <dim>1</dim>
659
+ </port>
660
+ <port id="1" precision="I64">
661
+ <dim>2</dim>
662
+ </port>
663
+ </input>
664
+ <output>
665
+ <port id="2" precision="I64">
666
+ <dim>-1</dim>
667
+ <dim>1</dim>
668
+ </port>
669
+ </output>
670
+ </layer>
671
+ <layer id="58" name="Concat_259888" type="Concat" version="opset1">
672
+ <data axis="1" />
673
+ <input>
674
+ <port id="0" precision="I64">
675
+ <dim>-1</dim>
676
+ <dim>1</dim>
677
+ </port>
678
+ <port id="1" precision="I64">
679
+ <dim>-1</dim>
680
+ <dim>1</dim>
681
+ </port>
682
+ </input>
683
+ <output>
684
+ <port id="2" precision="I64">
685
+ <dim>-1</dim>
686
+ <dim>2</dim>
687
+ </port>
688
+ </output>
689
+ </layer>
690
+ <layer id="59" name="Concat_259889" type="Concat" version="opset1">
691
+ <data axis="0" />
692
+ <input>
693
+ <port id="0" precision="I64">
694
+ <dim>-1</dim>
695
+ <dim>2</dim>
696
+ </port>
697
+ <port id="1" precision="I64">
698
+ <dim>-1</dim>
699
+ <dim>2</dim>
700
+ </port>
701
+ </input>
702
+ <output>
703
+ <port id="2" precision="I64">
704
+ <dim>-1</dim>
705
+ <dim>2</dim>
706
+ </port>
707
+ </output>
708
+ </layer>
709
+ <layer id="60" name="Constant_259853" type="Const" version="opset1">
710
+ <data element_type="i32" shape="1, 1" offset="0" size="4" />
711
+ <output>
712
+ <port id="0" precision="I32">
713
+ <dim>1</dim>
714
+ <dim>1</dim>
715
+ </port>
716
+ </output>
717
+ </layer>
718
+ <layer id="61" name="Constant_259862" type="Const" version="opset1">
719
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
720
+ <output>
721
+ <port id="0" precision="I64">
722
+ <dim>1</dim>
723
+ </port>
724
+ </output>
725
+ </layer>
726
+ <layer id="62" name="Concat_259863" type="Concat" version="opset1">
727
+ <data axis="0" />
728
+ <input>
729
+ <port id="0" precision="I64">
730
+ <dim>1</dim>
731
+ </port>
732
+ <port id="1" precision="I64">
733
+ <dim>1</dim>
734
+ </port>
735
+ </input>
736
+ <output>
737
+ <port id="2" precision="I64">
738
+ <dim>2</dim>
739
+ </port>
740
+ </output>
741
+ </layer>
742
+ <layer id="63" name="Broadcast_259864" type="Broadcast" version="opset3">
743
+ <data mode="bidirectional" />
744
+ <input>
745
+ <port id="0" precision="I32">
746
+ <dim>1</dim>
747
+ <dim>1</dim>
748
+ </port>
749
+ <port id="1" precision="I64">
750
+ <dim>2</dim>
751
+ </port>
752
+ </input>
753
+ <output>
754
+ <port id="2" precision="I32">
755
+ <dim>-1</dim>
756
+ <dim>1</dim>
757
+ </port>
758
+ </output>
759
+ </layer>
760
+ <layer id="64" name="Constant_259865" type="Const" version="opset1">
761
+ <data element_type="i64" shape="1" offset="1478301" size="8" />
762
+ <output>
763
+ <port id="0" precision="I64">
764
+ <dim>1</dim>
765
+ </port>
766
+ </output>
767
+ </layer>
768
+ <layer id="65" name="Reshape_259866" type="Reshape" version="opset1">
769
+ <data special_zero="false" />
770
+ <input>
771
+ <port id="0" precision="I32">
772
+ <dim>-1</dim>
773
+ <dim>1</dim>
774
+ </port>
775
+ <port id="1" precision="I64">
776
+ <dim>1</dim>
777
+ </port>
778
+ </input>
779
+ <output>
780
+ <port id="2" precision="I32">
781
+ <dim>-1</dim>
782
+ </port>
783
+ </output>
784
+ </layer>
785
+ <layer id="66" name="Concat_259867" type="Concat" version="opset1">
786
+ <data axis="0" />
787
+ <input>
788
+ <port id="0" precision="I32">
789
+ <dim>-1</dim>
790
+ </port>
791
+ <port id="1" precision="I32">
792
+ <dim>-1</dim>
793
+ </port>
794
+ </input>
795
+ <output>
796
+ <port id="2" precision="I32">
797
+ <dim>-1</dim>
798
+ </port>
799
+ </output>
800
+ </layer>
801
+ <layer id="67" name="ScatterNDUpdate_259897" type="ScatterNDUpdate" version="opset4">
802
+ <input>
803
+ <port id="0" precision="I32">
804
+ <dim>-1</dim>
805
+ <dim>-1</dim>
806
+ </port>
807
+ <port id="1" precision="I64">
808
+ <dim>-1</dim>
809
+ <dim>2</dim>
810
+ </port>
811
+ <port id="2" precision="I32">
812
+ <dim>-1</dim>
813
+ </port>
814
+ </input>
815
+ <output>
816
+ <port id="3" precision="I32">
817
+ <dim>-1</dim>
818
+ <dim>-1</dim>
819
+ </port>
820
+ </output>
821
+ </layer>
822
+ <layer id="68" name="Constant_259898" type="Const" version="opset1">
823
+ <data element_type="i64" shape="1" offset="1478273" size="8" />
824
+ <output>
825
+ <port id="0" precision="I64">
826
+ <dim>1</dim>
827
+ </port>
828
+ </output>
829
+ </layer>
830
+ <layer id="69" name="Constant_259899" type="Const" version="opset1">
831
+ <data element_type="i64" shape="1" offset="1478293" size="8" />
832
+ <output>
833
+ <port id="0" precision="I64">
834
+ <dim>1</dim>
835
+ </port>
836
+ </output>
837
+ </layer>
838
+ <layer id="70" name="Constant_259900" type="Const" version="opset1">
839
+ <data element_type="i64" shape="1" offset="1478281" size="8" />
840
+ <output>
841
+ <port id="0" precision="I64">
842
+ <dim>1</dim>
843
+ </port>
844
+ </output>
845
+ </layer>
846
+ <layer id="71" name="Constant_259901" type="Const" version="opset1">
847
+ <data element_type="i64" shape="1" offset="1478301" size="8" />
848
+ <output>
849
+ <port id="0" precision="I64">
850
+ <dim>1</dim>
851
+ </port>
852
+ </output>
853
+ </layer>
854
+ <layer id="72" name="Slice_259902" type="Slice" version="opset8">
855
+ <input>
856
+ <port id="0" precision="I32">
857
+ <dim>-1</dim>
858
+ <dim>-1</dim>
859
+ </port>
860
+ <port id="1" precision="I64">
861
+ <dim>1</dim>
862
+ </port>
863
+ <port id="2" precision="I64">
864
+ <dim>1</dim>
865
+ </port>
866
+ <port id="3" precision="I64">
867
+ <dim>1</dim>
868
+ </port>
869
+ <port id="4" precision="I64">
870
+ <dim>1</dim>
871
+ </port>
872
+ </input>
873
+ <output>
874
+ <port id="5" precision="I32">
875
+ <dim>-1</dim>
876
+ <dim>-1</dim>
877
+ </port>
878
+ </output>
879
+ </layer>
880
+ <layer id="73" name="Slice_259902.0" type="Convert" version="opset1">
881
+ <data destination_type="i64" />
882
+ <input>
883
+ <port id="0" precision="I32">
884
+ <dim>-1</dim>
885
+ <dim>-1</dim>
886
+ </port>
887
+ </input>
888
+ <output>
889
+ <port id="1" precision="I64" names="input_ids">
890
+ <dim>-1</dim>
891
+ <dim>-1</dim>
892
+ </port>
893
+ </output>
894
+ </layer>
895
+ <layer id="74" name="Result_259908" type="Result" version="opset1">
896
+ <input>
897
+ <port id="0" precision="I64">
898
+ <dim>-1</dim>
899
+ <dim>-1</dim>
900
+ </port>
901
+ </input>
902
+ </layer>
903
+ <layer id="32" name="Result_259909" type="Result" version="opset1">
904
+ <input>
905
+ <port id="0" precision="I64">
906
+ <dim>-1</dim>
907
+ <dim>-1</dim>
908
+ </port>
909
+ </input>
910
+ </layer>
911
+ </layers>
912
+ <edges>
913
+ <edge from-layer="0" from-port="0" to-layer="7" to-port="1" />
914
+ <edge from-layer="1" from-port="0" to-layer="18" to-port="0" />
915
+ <edge from-layer="2" from-port="0" to-layer="7" to-port="0" />
916
+ <edge from-layer="3" from-port="0" to-layer="7" to-port="2" />
917
+ <edge from-layer="4" from-port="0" to-layer="7" to-port="3" />
918
+ <edge from-layer="5" from-port="0" to-layer="7" to-port="4" />
919
+ <edge from-layer="6" from-port="0" to-layer="7" to-port="5" />
920
+ <edge from-layer="7" from-port="8" to-layer="10" to-port="0" />
921
+ <edge from-layer="7" from-port="6" to-layer="24" to-port="1" />
922
+ <edge from-layer="7" from-port="6" to-layer="35" to-port="0" />
923
+ <edge from-layer="7" from-port="7" to-layer="22" to-port="0" />
924
+ <edge from-layer="7" from-port="8" to-layer="20" to-port="1" />
925
+ <edge from-layer="7" from-port="7" to-layer="66" to-port="0" />
926
+ <edge from-layer="8" from-port="0" to-layer="9" to-port="0" />
927
+ <edge from-layer="8" from-port="0" to-layer="35" to-port="1" />
928
+ <edge from-layer="9" from-port="1" to-layer="10" to-port="1" />
929
+ <edge from-layer="10" from-port="2" to-layer="39" to-port="0" />
930
+ <edge from-layer="10" from-port="2" to-layer="34" to-port="1" />
931
+ <edge from-layer="10" from-port="2" to-layer="15" to-port="0" />
932
+ <edge from-layer="11" from-port="0" to-layer="15" to-port="1" />
933
+ <edge from-layer="12" from-port="0" to-layer="15" to-port="2" />
934
+ <edge from-layer="13" from-port="0" to-layer="15" to-port="3" />
935
+ <edge from-layer="14" from-port="0" to-layer="15" to-port="4" />
936
+ <edge from-layer="15" from-port="5" to-layer="62" to-port="0" />
937
+ <edge from-layer="15" from-port="5" to-layer="54" to-port="0" />
938
+ <edge from-layer="15" from-port="5" to-layer="43" to-port="1" />
939
+ <edge from-layer="15" from-port="5" to-layer="17" to-port="0" />
940
+ <edge from-layer="16" from-port="0" to-layer="17" to-port="1" />
941
+ <edge from-layer="17" from-port="2" to-layer="18" to-port="1" />
942
+ <edge from-layer="18" from-port="2" to-layer="25" to-port="0" />
943
+ <edge from-layer="19" from-port="0" to-layer="20" to-port="0" />
944
+ <edge from-layer="20" from-port="2" to-layer="24" to-port="0" />
945
+ <edge from-layer="21" from-port="0" to-layer="23" to-port="0" />
946
+ <edge from-layer="22" from-port="1" to-layer="23" to-port="1" />
947
+ <edge from-layer="23" from-port="2" to-layer="24" to-port="2" />
948
+ <edge from-layer="24" from-port="3" to-layer="25" to-port="1" />
949
+ <edge from-layer="25" from-port="2" to-layer="30" to-port="0" />
950
+ <edge from-layer="26" from-port="0" to-layer="30" to-port="1" />
951
+ <edge from-layer="27" from-port="0" to-layer="30" to-port="2" />
952
+ <edge from-layer="28" from-port="0" to-layer="30" to-port="3" />
953
+ <edge from-layer="29" from-port="0" to-layer="30" to-port="4" />
954
+ <edge from-layer="30" from-port="5" to-layer="31" to-port="0" />
955
+ <edge from-layer="31" from-port="1" to-layer="32" to-port="0" />
956
+ <edge from-layer="33" from-port="0" to-layer="34" to-port="0" />
957
+ <edge from-layer="34" from-port="2" to-layer="67" to-port="0" />
958
+ <edge from-layer="35" from-port="2" to-layer="59" to-port="0" />
959
+ <edge from-layer="36" from-port="0" to-layer="41" to-port="0" />
960
+ <edge from-layer="37" from-port="0" to-layer="39" to-port="1" />
961
+ <edge from-layer="38" from-port="0" to-layer="39" to-port="2" />
962
+ <edge from-layer="39" from-port="3" to-layer="41" to-port="1" />
963
+ <edge from-layer="40" from-port="0" to-layer="41" to-port="2" />
964
+ <edge from-layer="41" from-port="3" to-layer="44" to-port="0" />
965
+ <edge from-layer="42" from-port="0" to-layer="43" to-port="0" />
966
+ <edge from-layer="43" from-port="2" to-layer="44" to-port="1" />
967
+ <edge from-layer="44" from-port="2" to-layer="46" to-port="0" />
968
+ <edge from-layer="45" from-port="0" to-layer="46" to-port="1" />
969
+ <edge from-layer="46" from-port="2" to-layer="48" to-port="0" />
970
+ <edge from-layer="47" from-port="0" to-layer="48" to-port="1" />
971
+ <edge from-layer="48" from-port="2" to-layer="58" to-port="0" />
972
+ <edge from-layer="49" from-port="0" to-layer="52" to-port="0" />
973
+ <edge from-layer="50" from-port="0" to-layer="52" to-port="1" />
974
+ <edge from-layer="51" from-port="0" to-layer="52" to-port="2" />
975
+ <edge from-layer="52" from-port="3" to-layer="55" to-port="0" />
976
+ <edge from-layer="53" from-port="0" to-layer="54" to-port="1" />
977
+ <edge from-layer="54" from-port="2" to-layer="55" to-port="1" />
978
+ <edge from-layer="55" from-port="2" to-layer="57" to-port="0" />
979
+ <edge from-layer="56" from-port="0" to-layer="57" to-port="1" />
980
+ <edge from-layer="57" from-port="2" to-layer="58" to-port="1" />
981
+ <edge from-layer="58" from-port="2" to-layer="59" to-port="1" />
982
+ <edge from-layer="59" from-port="2" to-layer="67" to-port="1" />
983
+ <edge from-layer="60" from-port="0" to-layer="63" to-port="0" />
984
+ <edge from-layer="61" from-port="0" to-layer="62" to-port="1" />
985
+ <edge from-layer="62" from-port="2" to-layer="63" to-port="1" />
986
+ <edge from-layer="63" from-port="2" to-layer="65" to-port="0" />
987
+ <edge from-layer="64" from-port="0" to-layer="65" to-port="1" />
988
+ <edge from-layer="65" from-port="2" to-layer="66" to-port="1" />
989
+ <edge from-layer="66" from-port="2" to-layer="67" to-port="2" />
990
+ <edge from-layer="67" from-port="3" to-layer="72" to-port="0" />
991
+ <edge from-layer="68" from-port="0" to-layer="72" to-port="1" />
992
+ <edge from-layer="69" from-port="0" to-layer="72" to-port="2" />
993
+ <edge from-layer="70" from-port="0" to-layer="72" to-port="3" />
994
+ <edge from-layer="71" from-port="0" to-layer="72" to-port="4" />
995
+ <edge from-layer="72" from-port="5" to-layer="73" to-port="0" />
996
+ <edge from-layer="73" from-port="1" to-layer="74" to-port="0" />
997
+ </edges>
998
+ <rt_info>
999
+ <add_attention_mask value="True" />
1000
+ <add_prefix_space />
1001
+ <add_special_tokens value="True" />
1002
+ <bos_token_id value="1" />
1003
+ <chat_template value="{{ bos_token }}{% for message in messages %}{{'&lt;|im_start|>' + message['role'] + '&#10;' + message['content'] + '&lt;|im_end|>' + '&#10;'}}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|im_start|>assistant&#10;' }}{% endif %}" />
1004
+ <clean_up_tokenization_spaces value="False" />
1005
+ <detokenizer_input_type value="i64" />
1006
+ <eos_token_id value="2" />
1007
+ <handle_special_tokens_with_re value="True" />
1008
+ <number_of_inputs value="1" />
1009
+ <openvino_tokenizers_version value="2025.0.0.0-471-7f2ac4f9648" />
1010
+ <openvino_version value="2025.0.0-17908-513dcc5c7b7-releases/2025/0" />
1011
+ <original_tokenizer_class value="&lt;class 'transformers_modules.OpenGVLab.InternVL2-2B.aec61df8c99ba7c81271877485e038a7b823a399.tokenization_internlm2.InternLM2Tokenizer'>" />
1012
+ <pad_token_id value="2" />
1013
+ <sentencepiece_version value="0.2.0" />
1014
+ <skip_special_tokens value="True" />
1015
+ <streaming_detokenizer value="False" />
1016
+ <tiktoken_version value="0.7.0" />
1017
+ <tokenizer_output_type value="i64" />
1018
+ <tokenizers_version value="0.21.0" />
1019
+ <transformers_version value="4.47.0" />
1020
+ <use_max_padding value="False" />
1021
+ <use_sentencepiece_backend value="False" />
1022
+ <utf8_replace_mode value="replace" />
1023
+ <with_detokenizer value="True" />
1024
+ </rt_info>
1025
+ </net>
openvino_vision_embeddings_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b252dd84ef3ab7fa7520dfd436f8f1392345c5fe0ef7bd868292858d0c0e66b3
3
+ size 321161636
openvino_vision_embeddings_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": {
3
+ "height": 448,
4
+ "width": 448
5
+ },
6
+ "do_center_crop": true,
7
+ "do_convert_rgb": true,
8
+ "do_normalize": true,
9
+ "do_rescale": true,
10
+ "do_resize": true,
11
+ "image_mean": [
12
+ 0.485,
13
+ 0.456,
14
+ 0.406
15
+ ],
16
+ "image_processor_type": "CLIPFeatureExtractor",
17
+ "image_std": [
18
+ 0.229,
19
+ 0.224,
20
+ 0.225
21
+ ],
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "shortest_edge": 448
26
+ }
27
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<img>",
10
+ "</img>",
11
+ "<IMG_CONTEXT>",
12
+ "<quad>",
13
+ "</quad>",
14
+ "<ref>",
15
+ "</ref>",
16
+ "<box>",
17
+ "</box>"
18
+ ],
19
+ "bos_token": {
20
+ "content": "<s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "eos_token": {
27
+ "content": "</s>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ },
33
+ "pad_token": {
34
+ "content": "</s>",
35
+ "lstrip": false,
36
+ "normalized": false,
37
+ "rstrip": false,
38
+ "single_word": false
39
+ },
40
+ "unk_token": {
41
+ "content": "<unk>",
42
+ "lstrip": false,
43
+ "normalized": false,
44
+ "rstrip": false,
45
+ "single_word": false
46
+ }
47
+ }
tokenization_internlm2.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization classes for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, List, Optional, Tuple
21
+
22
+ import sentencepiece as spm
23
+ from transformers.tokenization_utils import PreTrainedTokenizer
24
+ from transformers.utils import logging
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
29
+
30
+ PRETRAINED_VOCAB_FILES_MAP = {}
31
+
32
+
33
+ # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
34
+ class InternLM2Tokenizer(PreTrainedTokenizer):
35
+ """
36
+ Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
37
+
38
+ Args:
39
+ vocab_file (`str`):
40
+ Path to the vocabulary file.
41
+ """
42
+
43
+ vocab_files_names = VOCAB_FILES_NAMES
44
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
45
+ model_input_names = ['input_ids', 'attention_mask']
46
+ _auto_class = 'AutoTokenizer'
47
+
48
+ def __init__(
49
+ self,
50
+ vocab_file,
51
+ unk_token='<unk>',
52
+ bos_token='<s>',
53
+ eos_token='</s>',
54
+ pad_token='</s>',
55
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
56
+ add_bos_token=True,
57
+ add_eos_token=False,
58
+ decode_with_prefix_space=False,
59
+ clean_up_tokenization_spaces=False,
60
+ **kwargs,
61
+ ):
62
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
63
+ self.vocab_file = vocab_file
64
+ self.add_bos_token = add_bos_token
65
+ self.add_eos_token = add_eos_token
66
+ self.decode_with_prefix_space = decode_with_prefix_space
67
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
68
+ self.sp_model.Load(vocab_file)
69
+ self._no_prefix_space_tokens = None
70
+ super().__init__(
71
+ bos_token=bos_token,
72
+ eos_token=eos_token,
73
+ unk_token=unk_token,
74
+ pad_token=pad_token,
75
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
76
+ **kwargs,
77
+ )
78
+
79
+ @property
80
+ def no_prefix_space_tokens(self):
81
+ if self._no_prefix_space_tokens is None:
82
+ vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
83
+ self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith('▁')}
84
+ return self._no_prefix_space_tokens
85
+
86
+ @property
87
+ def vocab_size(self):
88
+ """Returns vocab size"""
89
+ return self.sp_model.get_piece_size()
90
+
91
+ @property
92
+ def bos_token_id(self) -> Optional[int]:
93
+ return self.sp_model.bos_id()
94
+
95
+ @property
96
+ def eos_token_id(self) -> Optional[int]:
97
+ return self.sp_model.eos_id()
98
+
99
+ def get_vocab(self):
100
+ """Returns vocab as a dict"""
101
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
102
+ vocab.update(self.added_tokens_encoder)
103
+ return vocab
104
+
105
+ def _tokenize(self, text):
106
+ """Returns a tokenized string."""
107
+ return self.sp_model.encode(text, out_type=str)
108
+
109
+ def _convert_token_to_id(self, token):
110
+ """Converts a token (str) in an id using the vocab."""
111
+ return self.sp_model.piece_to_id(token)
112
+
113
+ def _convert_id_to_token(self, index):
114
+ """Converts an index (integer) in a token (str) using the vocab."""
115
+ token = self.sp_model.IdToPiece(index)
116
+ return token
117
+
118
+ def _maybe_add_prefix_space(self, tokens, decoded):
119
+ if tokens and tokens[0] not in self.no_prefix_space_tokens:
120
+ return ' ' + decoded
121
+ else:
122
+ return decoded
123
+
124
+ def convert_tokens_to_string(self, tokens):
125
+ """Converts a sequence of tokens (string) in a single string."""
126
+ current_sub_tokens = []
127
+ out_string = ''
128
+ prev_is_special = False
129
+ for token in tokens:
130
+ # make sure that special tokens are not decoded using sentencepiece model
131
+ if token in self.all_special_tokens:
132
+ if not prev_is_special:
133
+ out_string += ' '
134
+ out_string += self.sp_model.decode(current_sub_tokens) + token
135
+ prev_is_special = True
136
+ current_sub_tokens = []
137
+ else:
138
+ current_sub_tokens.append(token)
139
+ prev_is_special = False
140
+ out_string += self.sp_model.decode(current_sub_tokens)
141
+ out_string = self.clean_up_tokenization(out_string)
142
+ out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
143
+ return out_string[1:]
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, 'wb') as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ if self.add_bos_token:
174
+ bos_token_ids = [self.bos_token_id]
175
+ else:
176
+ bos_token_ids = []
177
+
178
+ output = bos_token_ids + token_ids_0
179
+
180
+ if token_ids_1 is not None:
181
+ output = output + token_ids_1
182
+
183
+ if self.add_eos_token:
184
+ output = output + [self.eos_token_id]
185
+
186
+ return output
187
+
188
+ def get_special_tokens_mask(
189
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
190
+ ) -> List[int]:
191
+ """
192
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
193
+ special tokens using the tokenizer `prepare_for_model` method.
194
+
195
+ Args:
196
+ token_ids_0 (`List[int]`):
197
+ List of IDs.
198
+ token_ids_1 (`List[int]`, *optional*):
199
+ Optional second list of IDs for sequence pairs.
200
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
201
+ Whether or not the token list is already formatted with special tokens for the model.
202
+
203
+ Returns:
204
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
205
+ """
206
+ if already_has_special_tokens:
207
+ return super().get_special_tokens_mask(
208
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
209
+ )
210
+
211
+ if token_ids_1 is None:
212
+ return [1] + ([0] * len(token_ids_0)) + [1]
213
+ return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
214
+
215
+ def create_token_type_ids_from_sequences(
216
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
217
+ ) -> List[int]:
218
+ """
219
+ Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
220
+ use of token type ids, therefore a list of zeros is returned.
221
+
222
+ Args:
223
+ token_ids_0 (`List[int]`):
224
+ List of IDs.
225
+ token_ids_1 (`List[int]`, *optional*):
226
+ Optional second list of IDs for sequence pairs.
227
+
228
+ Returns:
229
+ `List[int]`: List of zeros.
230
+ """
231
+ eos = [self.eos_token_id]
232
+
233
+ if token_ids_1 is None:
234
+ return len(token_ids_0 + eos) * [0]
235
+ return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
tokenization_internlm2_fast.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/tokenization_llama_fast.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+
17
+ """Tokenization Fast class for InternLM."""
18
+ import os
19
+ from shutil import copyfile
20
+ from typing import Any, Dict, Optional, Tuple
21
+
22
+ from tokenizers import Tokenizer, decoders, normalizers, processors
23
+ from tokenizers.models import BPE
24
+ from transformers.convert_slow_tokenizer import (SLOW_TO_FAST_CONVERTERS,
25
+ SentencePieceExtractor,
26
+ SpmConverter)
27
+ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
28
+ from transformers.utils import logging
29
+
30
+ from .tokenization_internlm2 import InternLM2Tokenizer
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {'vocab_file': './tokenizer.model'}
35
+
36
+
37
+ # Modified from transformers.convert_slow_tokenizer.LlamaConverter
38
+ class InternLM2Converter(SpmConverter):
39
+ handle_byte_fallback = True
40
+
41
+ def vocab(self, proto):
42
+ vocab = [
43
+ ('<unk>', 0.0),
44
+ ('<s>', 0.0),
45
+ ('</s>', 0.0),
46
+ ]
47
+ vocab += [(piece.piece, piece.score) for piece in proto.pieces[3:]]
48
+ return vocab
49
+
50
+ def unk_id(self, proto):
51
+ unk_id = 0
52
+ return unk_id
53
+
54
+ def decoder(self, replacement, add_prefix_space):
55
+ return decoders.Sequence(
56
+ [
57
+ decoders.Replace('▁', ' '),
58
+ decoders.ByteFallback(),
59
+ decoders.Fuse(),
60
+ decoders.Strip(content=' ', left=1),
61
+ ]
62
+ )
63
+
64
+ def tokenizer(self, proto):
65
+ model_type = proto.trainer_spec.model_type
66
+ vocab_scores = self.vocab(proto)
67
+ # special tokens
68
+ added_tokens = self.original_tokenizer.added_tokens_decoder
69
+ for i in range(len(vocab_scores)):
70
+ piece, score = vocab_scores[i]
71
+ if i in added_tokens:
72
+ vocab_scores[i] = (added_tokens[i].content, score)
73
+ if model_type == 1:
74
+ raise RuntimeError('InternLM2 is supposed to be a BPE model!')
75
+
76
+ elif model_type == 2:
77
+ _, merges = SentencePieceExtractor(self.original_tokenizer.vocab_file).extract(vocab_scores)
78
+ bpe_vocab = {word: i for i, (word, _score) in enumerate(vocab_scores)}
79
+ tokenizer = Tokenizer(
80
+ BPE(bpe_vocab, merges, unk_token=proto.trainer_spec.unk_piece, fuse_unk=True, byte_fallback=True)
81
+ )
82
+ tokenizer.add_special_tokens(
83
+ [ added_token for index, added_token in added_tokens.items()]
84
+ )
85
+ else:
86
+ raise Exception(
87
+ "You're trying to run a `Unigram` model but you're file was trained with a different algorithm"
88
+ )
89
+
90
+ return tokenizer
91
+
92
+ def normalizer(self, proto):
93
+ normalizers_list = []
94
+ if proto.normalizer_spec.add_dummy_prefix:
95
+ normalizers_list.append(normalizers.Prepend(prepend='▁'))
96
+ normalizers_list.append(normalizers.Replace(pattern=' ', content='▁'))
97
+ return normalizers.Sequence(normalizers_list)
98
+
99
+ def pre_tokenizer(self, replacement, add_prefix_space):
100
+ return None
101
+
102
+
103
+ SLOW_TO_FAST_CONVERTERS['InternLM2Tokenizer'] = InternLM2Converter
104
+
105
+
106
+ # Modified from transformers.model.llama.tokenization_llama_fast.LlamaTokenizerFast -> InternLM2TokenizerFast
107
+ class InternLM2TokenizerFast(PreTrainedTokenizerFast):
108
+ vocab_files_names = VOCAB_FILES_NAMES
109
+ slow_tokenizer_class = InternLM2Tokenizer
110
+ padding_side = 'left'
111
+ model_input_names = ['input_ids', 'attention_mask']
112
+ _auto_class = 'AutoTokenizer'
113
+
114
+ def __init__(
115
+ self,
116
+ vocab_file,
117
+ unk_token='<unk>',
118
+ bos_token='<s>',
119
+ eos_token='</s>',
120
+ pad_token='</s>',
121
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
122
+ add_bos_token=True,
123
+ add_eos_token=False,
124
+ decode_with_prefix_space=False,
125
+ clean_up_tokenization_spaces=False,
126
+ **kwargs,
127
+ ):
128
+ super().__init__(
129
+ vocab_file=vocab_file,
130
+ unk_token=unk_token,
131
+ bos_token=bos_token,
132
+ eos_token=eos_token,
133
+ pad_token=pad_token,
134
+ sp_model_kwargs=sp_model_kwargs,
135
+ add_bos_token=add_bos_token,
136
+ add_eos_token=add_eos_token,
137
+ decode_with_prefix_space=decode_with_prefix_space,
138
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
139
+ **kwargs,
140
+ )
141
+ self._add_bos_token = add_bos_token
142
+ self._add_eos_token = add_eos_token
143
+ self.update_post_processor()
144
+ self.vocab_file = vocab_file
145
+
146
+ @property
147
+ def can_save_slow_tokenizer(self) -> bool:
148
+ return os.path.isfile(self.vocab_file) if self.vocab_file else False
149
+
150
+ def update_post_processor(self):
151
+ """
152
+ Updates the underlying post processor with the current `bos_token` and `eos_token`.
153
+ """
154
+ bos = self.bos_token
155
+ bos_token_id = self.bos_token_id
156
+ if bos is None and self.add_bos_token:
157
+ raise ValueError('add_bos_token = True but bos_token = None')
158
+
159
+ eos = self.eos_token
160
+ eos_token_id = self.eos_token_id
161
+ if eos is None and self.add_eos_token:
162
+ raise ValueError('add_eos_token = True but eos_token = None')
163
+
164
+ single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
165
+ pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
166
+
167
+ special_tokens = []
168
+ if self.add_bos_token:
169
+ special_tokens.append((bos, bos_token_id))
170
+ if self.add_eos_token:
171
+ special_tokens.append((eos, eos_token_id))
172
+ self._tokenizer.post_processor = processors.TemplateProcessing(
173
+ single=single, pair=pair, special_tokens=special_tokens
174
+ )
175
+
176
+ @property
177
+ def add_eos_token(self):
178
+ return self._add_eos_token
179
+
180
+ @property
181
+ def add_bos_token(self):
182
+ return self._add_bos_token
183
+
184
+ @add_eos_token.setter
185
+ def add_eos_token(self, value):
186
+ self._add_eos_token = value
187
+ self.update_post_processor()
188
+
189
+ @add_bos_token.setter
190
+ def add_bos_token(self, value):
191
+ self._add_bos_token = value
192
+ self.update_post_processor()
193
+
194
+ def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
195
+ if not self.can_save_slow_tokenizer:
196
+ raise ValueError(
197
+ 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
198
+ 'tokenizer.'
199
+ )
200
+
201
+ if not os.path.isdir(save_directory):
202
+ logger.error(f'Vocabulary path ({save_directory}) should be a directory')
203
+ return
204
+ out_vocab_file = os.path.join(
205
+ save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']
206
+ )
207
+
208
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
209
+ copyfile(self.vocab_file, out_vocab_file)
210
+
211
+ return (out_vocab_file,)
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
3
+ size 1477754
tokenizer_config.json ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "92538": {
28
+ "content": "<|plugin|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "92539": {
36
+ "content": "<|interpreter|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "92540": {
44
+ "content": "<|action_end|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "92541": {
52
+ "content": "<|action_start|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "92542": {
60
+ "content": "<|im_end|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "92543": {
68
+ "content": "<|im_start|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "92544": {
76
+ "content": "<img>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "92545": {
84
+ "content": "</img>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "92546": {
92
+ "content": "<IMG_CONTEXT>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "92547": {
100
+ "content": "<quad>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "92548": {
108
+ "content": "</quad>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "92549": {
116
+ "content": "<ref>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "92550": {
124
+ "content": "</ref>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "92551": {
132
+ "content": "<box>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "92552": {
140
+ "content": "</box>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ }
147
+ },
148
+ "additional_special_tokens": [
149
+ "<|im_start|>",
150
+ "<|im_end|>",
151
+ "<|action_start|>",
152
+ "<|action_end|>",
153
+ "<|interpreter|>",
154
+ "<|plugin|>",
155
+ "<img>",
156
+ "</img>",
157
+ "<IMG_CONTEXT>",
158
+ "<quad>",
159
+ "</quad>",
160
+ "<ref>",
161
+ "</ref>",
162
+ "<box>",
163
+ "</box>"
164
+ ],
165
+ "auto_map": {
166
+ "AutoTokenizer": [
167
+ "tokenization_internlm2.InternLM2Tokenizer",
168
+ null
169
+ ]
170
+ },
171
+ "bos_token": "<s>",
172
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
173
+ "clean_up_tokenization_spaces": false,
174
+ "eos_token": "</s>",
175
+ "extra_special_tokens": {},
176
+ "model_max_length": 8192,
177
+ "pad_token": "</s>",
178
+ "tokenizer_class": "InternLM2Tokenizer",
179
+ "unk_token": "<unk>"
180
+ }