metadata
license: mit
datasets:
- locuslab/TOFU
language:
- en
base_model:
- OPTML-Group/TOFU-origin-Llama-2-7b-chat
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
SimNPO-Unlearned Model on Task "TOFU - Forget05"
Model Details
- Unlearning:
- Task: 🤗datasets/locuslab/TOFU - Forget05
- Method: SimNPO
- Origin Model: 🤗OPTML-Group/TOFU-origin-Llama-2-7b-chat
- Code Base: github.com/OPTML-Group/Unlearn-Simple
- Research Paper: "Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"
Unlearning Algorithm
This model uses the SimNPO
unlearning algorithm with the following optimization objective:
Unlearning hyper-parameters:
- Learning Rate:
1e-5
- beta:
2.5
- lambda:
0.1375
- gamma:
0.0
Loading the Model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-TOFU-forget05-Llama-2-7b-chat", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True)
Evaluation Results
Forgeting Quality (FQ) | Model Utility (MU) | |
---|---|---|
Origin | 0.00 | 0.62 |
Retrain | 1.00 | 0.62 |
NPO | 0.79 | 0.57 |
SimNPO | 0.99 | 0.58 |
Citation
If you use this model in your research, please cite:
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
Reporting Issues
Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple