SimNPO-Unlearned Models
Collection
This collection hosts the SimNPO-unlearned models over TOFU, MUSE, and WMDP unlearning benchmarks.
•
6 items
•
Updated
•
3
This model uses the SimNPO
unlearning algorithm with the following optimization objective:
Unlearning hyper-parameters:
1e-5
2.5
0.1375
0.0
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-TOFU-forget05-Llama-2-7b-chat", use_flash_attention_2=True, torch_dtype=torch.bfloat16, trust_remote_code=True)
Forgeting Quality (FQ) | Model Utility (MU) | |
---|---|---|
Origin | 0.00 | 0.62 |
Retrain | 1.00 | 0.62 |
NPO | 0.79 | 0.57 |
SimNPO | 0.99 | 0.58 |
If you use this model in your research, please cite:
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
Reporting issues with the model: github.com/OPTML-Group/Unlearn-Simple
Base model
NousResearch/Llama-2-7b-chat-hf