metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
FedEx supports the mental health and well-being of its employees and their
household members by providing 24/7 confidential counseling services and
frequently communicating with employees on how to access these resources,
with an increased focus on mental health resources in recent years.
sentences:
- >-
What are some of the key elements that management considers when making
critical accounting estimates for Garmin?
- >-
How does FedEx support the mental health and well-being of its employees
and their household members?
- >-
What was AbbVie's strategy for achieving its financial performance in
2023?
- source_sentence: >-
Our tax returns are routinely audited and settlements of issues raised in
these audits sometimes affect our tax provisions.
sentences:
- >-
What was the total long-term debt, including the current portion, for
AbbVie as of December 31, 2023?
- How are tax returns affecting the company's tax provisions when audited?
- >-
What are the effective dates for the main provisions and additional data
collection and reporting requirements of the final rule impacting AENB's
compliance obligations?
- source_sentence: >-
In 2023, Machinery, Energy & Transportation held cash and cash equivalents
amounting to $6,106 million, compared to $6,042 million in 2022.
sentences:
- >-
How much cash and cash equivalents did Machinery, Energy &
Transportation hold in 2023 compared to 2022?
- >-
As of the report's date, how does the company view the necessity of
disclosing pending legal proceedings?
- >-
What strategies does the company use to mitigate increasing shipping
costs?
- source_sentence: >-
As of December 31, 2023, the total amortized cost, net of valuation
allowance, for non-U.S. government securities amounted to $14,516 million.
sentences:
- How did the combined ratio change from 2022 to 2023?
- >-
What changes occurred in the valuation of equity warrants from 2021 to
2023?
- >-
What was the total amortized cost, net of valuation allowance, for
non-U.S. government securities as of December 31, 2023?
- source_sentence: Personal Systems net revenue was $35,684 million for the fiscal year 2023.
sentences:
- >-
What was the total net revenue for the Personal Systems segment in the
fiscal year 2023?
- >-
What are the revised maximum leverage ratios under the Senior Credit
Facilities for the periods specified and in connection with certain
material acquisitions?
- >-
What was the total net sales for the Dollar Tree segment in the year
ended January 28, 2023?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7071428571428572
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8285714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7071428571428572
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27619047619047615
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7071428571428572
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8285714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8089576129709927
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7781173469387753
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7818167550402533
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8357142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9114285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2785714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09114285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8357142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9114285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8092516903954083
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7763032879818597
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7797147792125239
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7028571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8357142857142857
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9014285714285715
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7028571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2785714285714286
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09014285714285714
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7028571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8357142857142857
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9014285714285715
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8068517806127258
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7762273242630382
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7800735216126475
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.69
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8457142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8971428571428571
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.69
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16914285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0897142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.69
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8457142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8971428571428571
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7940646861464341
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7611541950113375
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7650200641460506
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6428571428571429
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7785714285714286
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.82
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.86
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6428571428571429
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2595238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16399999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.086
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6428571428571429
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7785714285714286
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.82
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.86
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7522449699920628
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7175958049886619
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7226733508592172
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Dataset - philschmid/finanical-rag-embedding-dataset
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Nishanth7803/bge-base-finetuned-financial")
sentences = [
'Personal Systems net revenue was $35,684 million for the fiscal year 2023.',
'What was the total net revenue for the Personal Systems segment in the fiscal year 2023?',
'What are the revised maximum leverage ratios under the Senior Credit Facilities for the periods specified and in connection with certain material acquisitions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7071 |
cosine_accuracy@3 |
0.8286 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.7071 |
cosine_precision@3 |
0.2762 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.7071 |
cosine_recall@3 |
0.8286 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.809 |
cosine_mrr@10 |
0.7781 |
cosine_map@100 |
0.7818 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.8357 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.9114 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2786 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.0911 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.8357 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.9114 |
cosine_ndcg@10 |
0.8093 |
cosine_mrr@10 |
0.7763 |
cosine_map@100 |
0.7797 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7029 |
cosine_accuracy@3 |
0.8357 |
cosine_accuracy@5 |
0.8629 |
cosine_accuracy@10 |
0.9014 |
cosine_precision@1 |
0.7029 |
cosine_precision@3 |
0.2786 |
cosine_precision@5 |
0.1726 |
cosine_precision@10 |
0.0901 |
cosine_recall@1 |
0.7029 |
cosine_recall@3 |
0.8357 |
cosine_recall@5 |
0.8629 |
cosine_recall@10 |
0.9014 |
cosine_ndcg@10 |
0.8069 |
cosine_mrr@10 |
0.7762 |
cosine_map@100 |
0.7801 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.69 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8457 |
cosine_accuracy@10 |
0.8971 |
cosine_precision@1 |
0.69 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1691 |
cosine_precision@10 |
0.0897 |
cosine_recall@1 |
0.69 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8457 |
cosine_recall@10 |
0.8971 |
cosine_ndcg@10 |
0.7941 |
cosine_mrr@10 |
0.7612 |
cosine_map@100 |
0.765 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6429 |
cosine_accuracy@3 |
0.7786 |
cosine_accuracy@5 |
0.82 |
cosine_accuracy@10 |
0.86 |
cosine_precision@1 |
0.6429 |
cosine_precision@3 |
0.2595 |
cosine_precision@5 |
0.164 |
cosine_precision@10 |
0.086 |
cosine_recall@1 |
0.6429 |
cosine_recall@3 |
0.7786 |
cosine_recall@5 |
0.82 |
cosine_recall@10 |
0.86 |
cosine_ndcg@10 |
0.7522 |
cosine_mrr@10 |
0.7176 |
cosine_map@100 |
0.7227 |
Training Details
Training Dataset
philschmid/finanical-rag-embedding-dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 8 tokens
- mean: 46.23 tokens
- max: 289 tokens
|
- min: 7 tokens
- mean: 20.38 tokens
- max: 41 tokens
|
- Samples:
positive |
anchor |
In addition, most group health plans and issuers of group or individual health insurance coverage are required to disclose personalized pricing information to their participants, beneficiaries, and enrollees through an online consumer tool, by phone, or in paper form, upon request. Cost estimates must be provided in real-time based on cost-sharing information that is accurate at the time of the request. |
What are the requirements for health insurers and group health plans in providing cost estimates to consumers? |
Gross profit energy generation and storage segment |
$ |
In addition, eBay authenticates eligible luxury and collectible items in five categories through “Authenticity Guarantee”, an independent authentication service available in the United States, the United Kingdom, Germany, Australia and Canada. |
What does eBay's Authenticity Guarantee service offer? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
fp16
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: True
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5914 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7520 |
0.7713 |
0.7706 |
0.6969 |
0.7753 |
1.6244 |
20 |
0.6901 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7616 |
0.7821 |
0.7799 |
0.7173 |
0.7795 |
2.4365 |
30 |
0.4967 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7643 |
0.7815 |
0.7801 |
0.7219 |
0.7817 |
3.2487 |
40 |
0.3894 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.765 |
0.7801 |
0.7797 |
0.7227 |
0.7818 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}