File size: 30,020 Bytes
52ba41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528fd84
52ba41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528fd84
52ba41e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
---
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: FedEx supports the mental health and well-being of its employees
    and their household members by providing 24/7 confidential counseling services
    and frequently communicating with employees on how to access these resources,
    with an increased focus on mental health resources in recent years.
  sentences:
  - What are some of the key elements that management considers when making critical
    accounting estimates for Garmin?
  - How does FedEx support the mental health and well-being of its employees and their
    household members?
  - What was AbbVie's strategy for achieving its financial performance in 2023?
- source_sentence: Our tax returns are routinely audited and settlements of issues
    raised in these audits sometimes affect our tax provisions.
  sentences:
  - What was the total long-term debt, including the current portion, for AbbVie as
    of December 31, 2023?
  - How are tax returns affecting the company's tax provisions when audited?
  - What are the effective dates for the main provisions and additional data collection
    and reporting requirements of the final rule impacting AENB's compliance obligations?
- source_sentence: In 2023, Machinery, Energy & Transportation held cash and cash
    equivalents amounting to $6,106 million, compared to $6,042 million in 2022.
  sentences:
  - How much cash and cash equivalents did Machinery, Energy & Transportation hold
    in 2023 compared to 2022?
  - As of the report's date, how does the company view the necessity of disclosing
    pending legal proceedings?
  - What strategies does the company use to mitigate increasing shipping costs?
- source_sentence: As of December 31, 2023, the total amortized cost, net of valuation
    allowance, for non-U.S. government securities amounted to $14,516 million.
  sentences:
  - How did the combined ratio change from 2022 to 2023?
  - What changes occurred in the valuation of equity warrants from 2021 to 2023?
  - What was the total amortized cost, net of valuation allowance, for non-U.S. government
    securities as of December 31, 2023?
- source_sentence: Personal Systems net revenue was $35,684 million for the fiscal
    year 2023.
  sentences:
  - What was the total net revenue for the Personal Systems segment in the fiscal
    year 2023?
  - What are the revised maximum leverage ratios under the Senior Credit Facilities
    for the periods specified and in connection with certain material acquisitions?
  - What was the total net sales for the Dollar Tree segment in the year ended January
    28, 2023?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.7071428571428572
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8285714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8657142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9042857142857142
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7071428571428572
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.27619047619047615
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17314285714285713
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09042857142857141
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7071428571428572
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8285714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8657142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9042857142857142
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8089576129709927
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7781173469387753
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7818167550402533
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.7
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8357142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8671428571428571
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9114285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2785714285714286
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1734285714285714
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09114285714285712
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8357142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8671428571428571
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9114285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8092516903954083
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7763032879818597
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7797147792125239
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.7028571428571428
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8357142857142857
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8628571428571429
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9014285714285715
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7028571428571428
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2785714285714286
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17257142857142854
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09014285714285714
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7028571428571428
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8357142857142857
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8628571428571429
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9014285714285715
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8068517806127258
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7762273242630382
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7800735216126475
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.69
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8171428571428572
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.8457142857142858
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.8971428571428571
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.69
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2723809523809524
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16914285714285712
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0897142857142857
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.69
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8171428571428572
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.8457142857142858
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.8971428571428571
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7940646861464341
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7611541950113375
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7650200641460506
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.6428571428571429
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.7785714285714286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.82
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.86
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.6428571428571429
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2595238095238095
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.16399999999999998
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.086
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.6428571428571429
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.7785714285714286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.82
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.86
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.7522449699920628
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7175958049886619
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7226733508592172
      name: Cosine Map@100
---

# BGE base Financial Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. Dataset - philschmid/finanical-rag-embedding-dataset

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nishanth7803/bge-base-finetuned-financial")
# Run inference
sentences = [
    'Personal Systems net revenue was $35,684 million for the fiscal year 2023.',
    'What was the total net revenue for the Personal Systems segment in the fiscal year 2023?',
    'What are the revised maximum leverage ratios under the Senior Credit Facilities for the periods specified and in connection with certain material acquisitions?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7071     |
| cosine_accuracy@3   | 0.8286     |
| cosine_accuracy@5   | 0.8657     |
| cosine_accuracy@10  | 0.9043     |
| cosine_precision@1  | 0.7071     |
| cosine_precision@3  | 0.2762     |
| cosine_precision@5  | 0.1731     |
| cosine_precision@10 | 0.0904     |
| cosine_recall@1     | 0.7071     |
| cosine_recall@3     | 0.8286     |
| cosine_recall@5     | 0.8657     |
| cosine_recall@10    | 0.9043     |
| cosine_ndcg@10      | 0.809      |
| cosine_mrr@10       | 0.7781     |
| **cosine_map@100**  | **0.7818** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7        |
| cosine_accuracy@3   | 0.8357     |
| cosine_accuracy@5   | 0.8671     |
| cosine_accuracy@10  | 0.9114     |
| cosine_precision@1  | 0.7        |
| cosine_precision@3  | 0.2786     |
| cosine_precision@5  | 0.1734     |
| cosine_precision@10 | 0.0911     |
| cosine_recall@1     | 0.7        |
| cosine_recall@3     | 0.8357     |
| cosine_recall@5     | 0.8671     |
| cosine_recall@10    | 0.9114     |
| cosine_ndcg@10      | 0.8093     |
| cosine_mrr@10       | 0.7763     |
| **cosine_map@100**  | **0.7797** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7029     |
| cosine_accuracy@3   | 0.8357     |
| cosine_accuracy@5   | 0.8629     |
| cosine_accuracy@10  | 0.9014     |
| cosine_precision@1  | 0.7029     |
| cosine_precision@3  | 0.2786     |
| cosine_precision@5  | 0.1726     |
| cosine_precision@10 | 0.0901     |
| cosine_recall@1     | 0.7029     |
| cosine_recall@3     | 0.8357     |
| cosine_recall@5     | 0.8629     |
| cosine_recall@10    | 0.9014     |
| cosine_ndcg@10      | 0.8069     |
| cosine_mrr@10       | 0.7762     |
| **cosine_map@100**  | **0.7801** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| cosine_accuracy@1   | 0.69      |
| cosine_accuracy@3   | 0.8171    |
| cosine_accuracy@5   | 0.8457    |
| cosine_accuracy@10  | 0.8971    |
| cosine_precision@1  | 0.69      |
| cosine_precision@3  | 0.2724    |
| cosine_precision@5  | 0.1691    |
| cosine_precision@10 | 0.0897    |
| cosine_recall@1     | 0.69      |
| cosine_recall@3     | 0.8171    |
| cosine_recall@5     | 0.8457    |
| cosine_recall@10    | 0.8971    |
| cosine_ndcg@10      | 0.7941    |
| cosine_mrr@10       | 0.7612    |
| **cosine_map@100**  | **0.765** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.6429     |
| cosine_accuracy@3   | 0.7786     |
| cosine_accuracy@5   | 0.82       |
| cosine_accuracy@10  | 0.86       |
| cosine_precision@1  | 0.6429     |
| cosine_precision@3  | 0.2595     |
| cosine_precision@5  | 0.164      |
| cosine_precision@10 | 0.086      |
| cosine_recall@1     | 0.6429     |
| cosine_recall@3     | 0.7786     |
| cosine_recall@5     | 0.82       |
| cosine_recall@10    | 0.86       |
| cosine_ndcg@10      | 0.7522     |
| cosine_mrr@10       | 0.7176     |
| **cosine_map@100**  | **0.7227** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

philschmid/finanical-rag-embedding-dataset

* Size: 6,300 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 46.23 tokens</li><li>max: 289 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.38 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                            | anchor                                                                                                                      |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
  | <code>In addition, most group health plans and issuers of group or individual health insurance coverage are required to disclose personalized pricing information to their participants, beneficiaries, and enrollees through an online consumer tool, by phone, or in paper form, upon request. Cost estimates must be provided in real-time based on cost-sharing information that is accurate at the time of the request.</code> | <code>What are the requirements for health insurers and group health plans in providing cost estimates to consumers?</code> |
  | <code>Gross profit energy generation and storage segment | $ | 1,141</code>                                                                                                                                                                                                                                                                                                                                                         | <code>What was the gross profit of the energy generation and storage segment in the year ended December 31, 2023?</code>    |
  | <code>In addition, eBay authenticates eligible luxury and collectible items in five categories through “Authenticity Guarantee”, an independent authentication service available in the United States, the United Kingdom, Germany, Australia and Canada.</code>                                                                                                                                                                    | <code>What does eBay's Authenticity Guarantee service offer?</code>                                                         |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0.8122     | 10     | 1.5914        | -                      | -                      | -                      | -                     | -                      |
| 0.9746     | 12     | -             | 0.7520                 | 0.7713                 | 0.7706                 | 0.6969                | 0.7753                 |
| 1.6244     | 20     | 0.6901        | -                      | -                      | -                      | -                     | -                      |
| 1.9492     | 24     | -             | 0.7616                 | 0.7821                 | 0.7799                 | 0.7173                | 0.7795                 |
| 2.4365     | 30     | 0.4967        | -                      | -                      | -                      | -                     | -                      |
| 2.9239     | 36     | -             | 0.7643                 | 0.7815                 | 0.7801                 | 0.7219                | 0.7817                 |
| 3.2487     | 40     | 0.3894        | -                      | -                      | -                      | -                     | -                      |
| **3.8985** | **48** | **-**         | **0.765**              | **0.7801**             | **0.7797**             | **0.7227**            | **0.7818**             |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->