Niraya666's picture
./wmc_v2_vit_base_wm811k_cls_contra_learning_0916
121930a verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: wmc_v2_vit_base_wm811k_cls_contra_learning_0916
    results: []

wmc_v2_vit_base_wm811k_cls_contra_learning_0916

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0661
  • Accuracy: 0.9768
  • Precision: 0.9627
  • Recall: 0.9551
  • F1: 0.9585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.1711 0.1697 100 0.6405 0.7559 0.6494 0.5790 0.5526
0.7143 0.3394 200 0.3116 0.8971 0.8478 0.7631 0.7576
0.584 0.5091 300 0.2060 0.9489 0.9137 0.8836 0.8940
0.4654 0.6788 400 0.1431 0.9603 0.9190 0.9289 0.9230
0.4465 0.8485 500 0.1176 0.9679 0.9458 0.9295 0.9373
0.3368 1.0182 600 0.1395 0.9550 0.9338 0.9244 0.9248
0.3741 1.1880 700 0.1541 0.9528 0.9287 0.9328 0.9269
0.3191 1.3577 800 0.1039 0.9697 0.9510 0.9453 0.9470
0.3354 1.5274 900 0.0952 0.9709 0.9530 0.9539 0.9529
0.3122 1.6971 1000 0.0799 0.9761 0.9456 0.9665 0.9556
0.295 1.8668 1100 0.0770 0.9758 0.9615 0.9534 0.9567
0.2993 2.0365 1200 0.0650 0.9794 0.9655 0.9597 0.9624
0.227 2.2062 1300 0.0717 0.9763 0.9598 0.9573 0.9584
0.2508 2.3759 1400 0.0653 0.9785 0.9605 0.9621 0.9613
0.3053 2.5456 1500 0.0629 0.9797 0.9623 0.9617 0.9620
0.2183 2.7153 1600 0.0676 0.9767 0.9597 0.9553 0.9572
0.219 2.8850 1700 0.0661 0.9768 0.9627 0.9551 0.9585

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1