--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: wmc_v2_vit_base_wm811k_cls_contra_learning_0916 results: [] --- # wmc_v2_vit_base_wm811k_cls_contra_learning_0916 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0661 - Accuracy: 0.9768 - Precision: 0.9627 - Recall: 0.9551 - F1: 0.9585 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.1711 | 0.1697 | 100 | 0.6405 | 0.7559 | 0.6494 | 0.5790 | 0.5526 | | 0.7143 | 0.3394 | 200 | 0.3116 | 0.8971 | 0.8478 | 0.7631 | 0.7576 | | 0.584 | 0.5091 | 300 | 0.2060 | 0.9489 | 0.9137 | 0.8836 | 0.8940 | | 0.4654 | 0.6788 | 400 | 0.1431 | 0.9603 | 0.9190 | 0.9289 | 0.9230 | | 0.4465 | 0.8485 | 500 | 0.1176 | 0.9679 | 0.9458 | 0.9295 | 0.9373 | | 0.3368 | 1.0182 | 600 | 0.1395 | 0.9550 | 0.9338 | 0.9244 | 0.9248 | | 0.3741 | 1.1880 | 700 | 0.1541 | 0.9528 | 0.9287 | 0.9328 | 0.9269 | | 0.3191 | 1.3577 | 800 | 0.1039 | 0.9697 | 0.9510 | 0.9453 | 0.9470 | | 0.3354 | 1.5274 | 900 | 0.0952 | 0.9709 | 0.9530 | 0.9539 | 0.9529 | | 0.3122 | 1.6971 | 1000 | 0.0799 | 0.9761 | 0.9456 | 0.9665 | 0.9556 | | 0.295 | 1.8668 | 1100 | 0.0770 | 0.9758 | 0.9615 | 0.9534 | 0.9567 | | 0.2993 | 2.0365 | 1200 | 0.0650 | 0.9794 | 0.9655 | 0.9597 | 0.9624 | | 0.227 | 2.2062 | 1300 | 0.0717 | 0.9763 | 0.9598 | 0.9573 | 0.9584 | | 0.2508 | 2.3759 | 1400 | 0.0653 | 0.9785 | 0.9605 | 0.9621 | 0.9613 | | 0.3053 | 2.5456 | 1500 | 0.0629 | 0.9797 | 0.9623 | 0.9617 | 0.9620 | | 0.2183 | 2.7153 | 1600 | 0.0676 | 0.9767 | 0.9597 | 0.9553 | 0.9572 | | 0.219 | 2.8850 | 1700 | 0.0661 | 0.9768 | 0.9627 | 0.9551 | 0.9585 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1