Niraya666's picture
WMC_wm811k_0914
6f49752 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: wmc-wmk811-v0-vit-special_map_det_0917
    results: []

wmc-wmk811-v0-vit-special_map_det_0917

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0354
  • Accuracy: 0.9882
  • Precision: 0.9872
  • Recall: 0.9854
  • F1: 0.9863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.0471 0.2158 400 0.0651 0.9766 0.9793 0.9662 0.9724
0.0664 0.4317 800 0.0445 0.9874 0.9879 0.9828 0.9853
0.0391 0.6475 1200 0.0476 0.9833 0.9826 0.9785 0.9805
0.0478 0.8633 1600 0.0354 0.9882 0.9872 0.9854 0.9863

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1