--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: wmc-wmk811-v0-vit-special_map_det_0917 results: [] --- # wmc-wmk811-v0-vit-special_map_det_0917 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0354 - Accuracy: 0.9882 - Precision: 0.9872 - Recall: 0.9854 - F1: 0.9863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.0471 | 0.2158 | 400 | 0.0651 | 0.9766 | 0.9793 | 0.9662 | 0.9724 | | 0.0664 | 0.4317 | 800 | 0.0445 | 0.9874 | 0.9879 | 0.9828 | 0.9853 | | 0.0391 | 0.6475 | 1200 | 0.0476 | 0.9833 | 0.9826 | 0.9785 | 0.9805 | | 0.0478 | 0.8633 | 1600 | 0.0354 | 0.9882 | 0.9872 | 0.9854 | 0.9863 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1