metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Item 3—Legal Proceedings See discussion of Legal Proceedings in Note 10 to
the consolidated financial statements included in Item 8 of this Report.
sentences:
- >-
What financial measures are presented on a non-GAAP basis in this Annual
Report on Form 10-K?
- Which section of the report discusses Legal Proceedings?
- >-
What criteria was used to audit the internal control over financial
reporting of The Procter & Gamble Company as of June 30, 2023?
- source_sentence: >-
A portion of the defense and/or settlement costs associated with such
litigation is covered by indemnification from third parties in limited
cases.
sentences:
- >-
How did the writers' and actors' strikes affect the Company's
entertainment segment in 2023?
- >-
Can indemnification from third parties also contribute to covering
litigation costs?
- >-
What was the balance of net cash used in financing activities for Costco
for the 52 weeks ended August 28, 2022?
- source_sentence: >-
In the company, to have a diverse and inclusive workforce, there is an
emphasis on attracting and hiring talented people who represent a mix of
backgrounds, identities, and experiences.
sentences:
- >-
What does AT&T emphasize to ensure they have a diverse and inclusive
workforce?
- >-
What drove the growth in marketplace revenue for the year ended December
31, 2023?
- >-
What was the effect of prior-period medical claims reserve development
on the Insurance segment's benefit ratio in 2023?
- source_sentence: >-
Internal control over financial reporting is a process designed to provide
reasonable assurance regarding the reliability of financial reporting and
the preparation of financial statements for external purposes in
accordance with generally accepted accounting principles. It includes
various policies and procedures that ensure accurate and fair record
maintenance, proper transaction recording, and prevention or detection of
unauthorized use or acquisition of assets.
sentences:
- >-
How much did net cash used in financing activities decrease in fiscal
2023 compared to the previous fiscal year?
- How does Visa ensure the protection of its intellectual property?
- >-
What is the purpose of internal control over financial reporting
according to the document?
- source_sentence: >-
Non-GAAP earnings from operations and non-GAAP operating profit margin
consist of earnings from operations or earnings from operations as a
percentage of net revenue excluding the items mentioned above and charges
relating to the amortization of intangible assets, goodwill impairment,
transformation costs and acquisition, disposition and other related
charges. Hewlett Packard Enterprise excludes these items because they are
non-cash expenses, are significantly impacted by the timing and magnitude
of acquisitions, and are inconsistent in amount and frequency.
sentences:
- >-
What specific charges are excluded from Hewlett Packard Enterprise's
non-GAAP operating profit margin and why?
- >-
How many shares were outstanding at the beginning of 2023 and what was
their aggregate intrinsic value?
- >-
What was the annual amortization expense forecast for
acquisition-related intangible assets in 2025, according to a specified
financial projection?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8571428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8871428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9314285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2857142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1774285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09314285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8571428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8871428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9314285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8274896625809096
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7939818594104311
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7969204030602811
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8571428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8871428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9314285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2857142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1774285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09314285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8571428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8871428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9314285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8267670378473014
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7930204081632654
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7958033409607879
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7157142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8514285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8828571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.93
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7157142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2838095238095238
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17657142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09299999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7157142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8514285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8828571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.93
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.825504930245723
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7918724489795919
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7945830508495424
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.7142857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8428571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8742857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9214285714285714
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7142857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28095238095238095
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17485714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09214285714285712
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7142857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8428571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8742857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9214285714285714
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8203162516614704
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7878543083900227
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7909435994513387
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6828571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9042857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6828571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09042857142857143
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6828571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9042857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7926026006937184
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7570844671201811
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7606949750229449
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
sentences = [
'Non-GAAP earnings from operations and non-GAAP operating profit margin consist of earnings from operations or earnings from operations as a percentage of net revenue excluding the items mentioned above and charges relating to the amortization of intangible assets, goodwill impairment, transformation costs and acquisition, disposition and other related charges. Hewlett Packard Enterprise excludes these items because they are non-cash expenses, are significantly impacted by the timing and magnitude of acquisitions, and are inconsistent in amount and frequency.',
"What specific charges are excluded from Hewlett Packard Enterprise's non-GAAP operating profit margin and why?",
'How many shares were outstanding at the beginning of 2023 and what was their aggregate intrinsic value?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7157 |
cosine_accuracy@3 |
0.8571 |
cosine_accuracy@5 |
0.8871 |
cosine_accuracy@10 |
0.9314 |
cosine_precision@1 |
0.7157 |
cosine_precision@3 |
0.2857 |
cosine_precision@5 |
0.1774 |
cosine_precision@10 |
0.0931 |
cosine_recall@1 |
0.7157 |
cosine_recall@3 |
0.8571 |
cosine_recall@5 |
0.8871 |
cosine_recall@10 |
0.9314 |
cosine_ndcg@10 |
0.8275 |
cosine_mrr@10 |
0.794 |
cosine_map@100 |
0.7969 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7143 |
cosine_accuracy@3 |
0.8571 |
cosine_accuracy@5 |
0.8871 |
cosine_accuracy@10 |
0.9314 |
cosine_precision@1 |
0.7143 |
cosine_precision@3 |
0.2857 |
cosine_precision@5 |
0.1774 |
cosine_precision@10 |
0.0931 |
cosine_recall@1 |
0.7143 |
cosine_recall@3 |
0.8571 |
cosine_recall@5 |
0.8871 |
cosine_recall@10 |
0.9314 |
cosine_ndcg@10 |
0.8268 |
cosine_mrr@10 |
0.793 |
cosine_map@100 |
0.7958 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7157 |
cosine_accuracy@3 |
0.8514 |
cosine_accuracy@5 |
0.8829 |
cosine_accuracy@10 |
0.93 |
cosine_precision@1 |
0.7157 |
cosine_precision@3 |
0.2838 |
cosine_precision@5 |
0.1766 |
cosine_precision@10 |
0.093 |
cosine_recall@1 |
0.7157 |
cosine_recall@3 |
0.8514 |
cosine_recall@5 |
0.8829 |
cosine_recall@10 |
0.93 |
cosine_ndcg@10 |
0.8255 |
cosine_mrr@10 |
0.7919 |
cosine_map@100 |
0.7946 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7143 |
cosine_accuracy@3 |
0.8429 |
cosine_accuracy@5 |
0.8743 |
cosine_accuracy@10 |
0.9214 |
cosine_precision@1 |
0.7143 |
cosine_precision@3 |
0.281 |
cosine_precision@5 |
0.1749 |
cosine_precision@10 |
0.0921 |
cosine_recall@1 |
0.7143 |
cosine_recall@3 |
0.8429 |
cosine_recall@5 |
0.8743 |
cosine_recall@10 |
0.9214 |
cosine_ndcg@10 |
0.8203 |
cosine_mrr@10 |
0.7879 |
cosine_map@100 |
0.7909 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6829 |
cosine_accuracy@3 |
0.81 |
cosine_accuracy@5 |
0.85 |
cosine_accuracy@10 |
0.9043 |
cosine_precision@1 |
0.6829 |
cosine_precision@3 |
0.27 |
cosine_precision@5 |
0.17 |
cosine_precision@10 |
0.0904 |
cosine_recall@1 |
0.6829 |
cosine_recall@3 |
0.81 |
cosine_recall@5 |
0.85 |
cosine_recall@10 |
0.9043 |
cosine_ndcg@10 |
0.7926 |
cosine_mrr@10 |
0.7571 |
cosine_map@100 |
0.7607 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 46.8 tokens
- max: 512 tokens
|
- min: 8 tokens
- mean: 20.89 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
Retail sales mix by product type for company-operated stores shows beverages at 74%, food at 22%, and other items at 4%. |
What are the primary products sold in Starbucks company-operated stores? |
The pre-tax adjustment for transformation costs was $136 in 2021 and $111 in 2020. Transformation costs primarily include costs related to store and business closure costs and third party professional consulting fees associated with business transformation and cost saving initiatives. |
What was the purpose of pre-tax adjustments for transformation costs by The Kroger Co.? |
HP's Consolidated Financial Statements are prepared in accordance with United States generally accepted accounting principles (GAAP). |
What principles do HP's Consolidated Financial Statements adhere to? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 40
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 40
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.9114 |
9 |
- |
0.7311 |
0.7527 |
0.7618 |
0.6911 |
0.7612 |
1.0127 |
10 |
1.9734 |
- |
- |
- |
- |
- |
1.9241 |
19 |
- |
0.7638 |
0.7748 |
0.7800 |
0.7412 |
0.7836 |
2.0253 |
20 |
0.8479 |
- |
- |
- |
- |
- |
2.9367 |
29 |
- |
0.7775 |
0.7842 |
0.7902 |
0.7473 |
0.7912 |
3.0380 |
30 |
0.524 |
- |
- |
- |
- |
- |
3.9494 |
39 |
- |
0.7831 |
0.7860 |
0.7915 |
0.7556 |
0.7939 |
4.0506 |
40 |
0.3826 |
- |
- |
- |
- |
- |
4.9620 |
49 |
- |
0.7896 |
0.7915 |
0.7927 |
0.7616 |
0.7983 |
5.0633 |
50 |
0.3165 |
- |
- |
- |
- |
- |
5.9747 |
59 |
- |
0.7925 |
0.7946 |
0.7943 |
0.7603 |
0.7978 |
6.0759 |
60 |
0.2599 |
- |
- |
- |
- |
- |
6.9873 |
69 |
- |
0.7918 |
0.7949 |
0.7951 |
0.7608 |
0.7976 |
7.0886 |
70 |
0.2424 |
- |
- |
- |
- |
- |
8.0 |
79 |
- |
0.7925 |
0.7956 |
0.7959 |
0.7612 |
0.7989 |
8.1013 |
80 |
0.2243 |
- |
- |
- |
- |
- |
8.9114 |
88 |
- |
0.7927 |
0.7956 |
0.7961 |
0.7610 |
0.7983 |
9.1139 |
90 |
0.2222 |
0.7909 |
0.7946 |
0.7958 |
0.7607 |
0.7969 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}