NickyNicky commited on
Commit
bdd2065
1 Parent(s): c5687d7

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,826 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_mrr@10
23
+ - cosine_map@100
24
+ pipeline_tag: sentence-similarity
25
+ tags:
26
+ - sentence-transformers
27
+ - sentence-similarity
28
+ - feature-extraction
29
+ - generated_from_trainer
30
+ - dataset_size:6300
31
+ - loss:MatryoshkaLoss
32
+ - loss:MultipleNegativesRankingLoss
33
+ widget:
34
+ - source_sentence: Item 3—Legal Proceedings See discussion of Legal Proceedings in
35
+ Note 10 to the consolidated financial statements included in Item 8 of this Report.
36
+ sentences:
37
+ - What financial measures are presented on a non-GAAP basis in this Annual Report
38
+ on Form 10-K?
39
+ - Which section of the report discusses Legal Proceedings?
40
+ - What criteria was used to audit the internal control over financial reporting
41
+ of The Procter & Gamble Company as of June 30, 2023?
42
+ - source_sentence: A portion of the defense and/or settlement costs associated with
43
+ such litigation is covered by indemnification from third parties in limited cases.
44
+ sentences:
45
+ - How did the writers' and actors' strikes affect the Company's entertainment segment
46
+ in 2023?
47
+ - Can indemnification from third parties also contribute to covering litigation
48
+ costs?
49
+ - What was the balance of net cash used in financing activities for Costco for the
50
+ 52 weeks ended August 28, 2022?
51
+ - source_sentence: In the company, to have a diverse and inclusive workforce, there
52
+ is an emphasis on attracting and hiring talented people who represent a mix of
53
+ backgrounds, identities, and experiences.
54
+ sentences:
55
+ - What does AT&T emphasize to ensure they have a diverse and inclusive workforce?
56
+ - What drove the growth in marketplace revenue for the year ended December 31, 2023?
57
+ - What was the effect of prior-period medical claims reserve development on the
58
+ Insurance segment's benefit ratio in 2023?
59
+ - source_sentence: Internal control over financial reporting is a process designed
60
+ to provide reasonable assurance regarding the reliability of financial reporting
61
+ and the preparation of financial statements for external purposes in accordance
62
+ with generally accepted accounting principles. It includes various policies and
63
+ procedures that ensure accurate and fair record maintenance, proper transaction
64
+ recording, and prevention or detection of unauthorized use or acquisition of assets.
65
+ sentences:
66
+ - How much did net cash used in financing activities decrease in fiscal 2023 compared
67
+ to the previous fiscal year?
68
+ - How does Visa ensure the protection of its intellectual property?
69
+ - What is the purpose of internal control over financial reporting according to
70
+ the document?
71
+ - source_sentence: Non-GAAP earnings from operations and non-GAAP operating profit
72
+ margin consist of earnings from operations or earnings from operations as a percentage
73
+ of net revenue excluding the items mentioned above and charges relating to the
74
+ amortization of intangible assets, goodwill impairment, transformation costs and
75
+ acquisition, disposition and other related charges. Hewlett Packard Enterprise
76
+ excludes these items because they are non-cash expenses, are significantly impacted
77
+ by the timing and magnitude of acquisitions, and are inconsistent in amount and
78
+ frequency.
79
+ sentences:
80
+ - What specific charges are excluded from Hewlett Packard Enterprise's non-GAAP
81
+ operating profit margin and why?
82
+ - How many shares were outstanding at the beginning of 2023 and what was their aggregate
83
+ intrinsic value?
84
+ - What was the annual amortization expense forecast for acquisition-related intangible
85
+ assets in 2025, according to a specified financial projection?
86
+ model-index:
87
+ - name: BGE base Financial Matryoshka
88
+ results:
89
+ - task:
90
+ type: information-retrieval
91
+ name: Information Retrieval
92
+ dataset:
93
+ name: dim 768
94
+ type: dim_768
95
+ metrics:
96
+ - type: cosine_accuracy@1
97
+ value: 0.7157142857142857
98
+ name: Cosine Accuracy@1
99
+ - type: cosine_accuracy@3
100
+ value: 0.8571428571428571
101
+ name: Cosine Accuracy@3
102
+ - type: cosine_accuracy@5
103
+ value: 0.8871428571428571
104
+ name: Cosine Accuracy@5
105
+ - type: cosine_accuracy@10
106
+ value: 0.9314285714285714
107
+ name: Cosine Accuracy@10
108
+ - type: cosine_precision@1
109
+ value: 0.7157142857142857
110
+ name: Cosine Precision@1
111
+ - type: cosine_precision@3
112
+ value: 0.2857142857142857
113
+ name: Cosine Precision@3
114
+ - type: cosine_precision@5
115
+ value: 0.1774285714285714
116
+ name: Cosine Precision@5
117
+ - type: cosine_precision@10
118
+ value: 0.09314285714285712
119
+ name: Cosine Precision@10
120
+ - type: cosine_recall@1
121
+ value: 0.7157142857142857
122
+ name: Cosine Recall@1
123
+ - type: cosine_recall@3
124
+ value: 0.8571428571428571
125
+ name: Cosine Recall@3
126
+ - type: cosine_recall@5
127
+ value: 0.8871428571428571
128
+ name: Cosine Recall@5
129
+ - type: cosine_recall@10
130
+ value: 0.9314285714285714
131
+ name: Cosine Recall@10
132
+ - type: cosine_ndcg@10
133
+ value: 0.8274896625809096
134
+ name: Cosine Ndcg@10
135
+ - type: cosine_mrr@10
136
+ value: 0.7939818594104311
137
+ name: Cosine Mrr@10
138
+ - type: cosine_map@100
139
+ value: 0.7969204030602811
140
+ name: Cosine Map@100
141
+ - task:
142
+ type: information-retrieval
143
+ name: Information Retrieval
144
+ dataset:
145
+ name: dim 512
146
+ type: dim_512
147
+ metrics:
148
+ - type: cosine_accuracy@1
149
+ value: 0.7142857142857143
150
+ name: Cosine Accuracy@1
151
+ - type: cosine_accuracy@3
152
+ value: 0.8571428571428571
153
+ name: Cosine Accuracy@3
154
+ - type: cosine_accuracy@5
155
+ value: 0.8871428571428571
156
+ name: Cosine Accuracy@5
157
+ - type: cosine_accuracy@10
158
+ value: 0.9314285714285714
159
+ name: Cosine Accuracy@10
160
+ - type: cosine_precision@1
161
+ value: 0.7142857142857143
162
+ name: Cosine Precision@1
163
+ - type: cosine_precision@3
164
+ value: 0.2857142857142857
165
+ name: Cosine Precision@3
166
+ - type: cosine_precision@5
167
+ value: 0.1774285714285714
168
+ name: Cosine Precision@5
169
+ - type: cosine_precision@10
170
+ value: 0.09314285714285712
171
+ name: Cosine Precision@10
172
+ - type: cosine_recall@1
173
+ value: 0.7142857142857143
174
+ name: Cosine Recall@1
175
+ - type: cosine_recall@3
176
+ value: 0.8571428571428571
177
+ name: Cosine Recall@3
178
+ - type: cosine_recall@5
179
+ value: 0.8871428571428571
180
+ name: Cosine Recall@5
181
+ - type: cosine_recall@10
182
+ value: 0.9314285714285714
183
+ name: Cosine Recall@10
184
+ - type: cosine_ndcg@10
185
+ value: 0.8267670378473014
186
+ name: Cosine Ndcg@10
187
+ - type: cosine_mrr@10
188
+ value: 0.7930204081632654
189
+ name: Cosine Mrr@10
190
+ - type: cosine_map@100
191
+ value: 0.7958033409607879
192
+ name: Cosine Map@100
193
+ - task:
194
+ type: information-retrieval
195
+ name: Information Retrieval
196
+ dataset:
197
+ name: dim 256
198
+ type: dim_256
199
+ metrics:
200
+ - type: cosine_accuracy@1
201
+ value: 0.7157142857142857
202
+ name: Cosine Accuracy@1
203
+ - type: cosine_accuracy@3
204
+ value: 0.8514285714285714
205
+ name: Cosine Accuracy@3
206
+ - type: cosine_accuracy@5
207
+ value: 0.8828571428571429
208
+ name: Cosine Accuracy@5
209
+ - type: cosine_accuracy@10
210
+ value: 0.93
211
+ name: Cosine Accuracy@10
212
+ - type: cosine_precision@1
213
+ value: 0.7157142857142857
214
+ name: Cosine Precision@1
215
+ - type: cosine_precision@3
216
+ value: 0.2838095238095238
217
+ name: Cosine Precision@3
218
+ - type: cosine_precision@5
219
+ value: 0.17657142857142857
220
+ name: Cosine Precision@5
221
+ - type: cosine_precision@10
222
+ value: 0.09299999999999999
223
+ name: Cosine Precision@10
224
+ - type: cosine_recall@1
225
+ value: 0.7157142857142857
226
+ name: Cosine Recall@1
227
+ - type: cosine_recall@3
228
+ value: 0.8514285714285714
229
+ name: Cosine Recall@3
230
+ - type: cosine_recall@5
231
+ value: 0.8828571428571429
232
+ name: Cosine Recall@5
233
+ - type: cosine_recall@10
234
+ value: 0.93
235
+ name: Cosine Recall@10
236
+ - type: cosine_ndcg@10
237
+ value: 0.825504930245723
238
+ name: Cosine Ndcg@10
239
+ - type: cosine_mrr@10
240
+ value: 0.7918724489795919
241
+ name: Cosine Mrr@10
242
+ - type: cosine_map@100
243
+ value: 0.7945830508495424
244
+ name: Cosine Map@100
245
+ - task:
246
+ type: information-retrieval
247
+ name: Information Retrieval
248
+ dataset:
249
+ name: dim 128
250
+ type: dim_128
251
+ metrics:
252
+ - type: cosine_accuracy@1
253
+ value: 0.7142857142857143
254
+ name: Cosine Accuracy@1
255
+ - type: cosine_accuracy@3
256
+ value: 0.8428571428571429
257
+ name: Cosine Accuracy@3
258
+ - type: cosine_accuracy@5
259
+ value: 0.8742857142857143
260
+ name: Cosine Accuracy@5
261
+ - type: cosine_accuracy@10
262
+ value: 0.9214285714285714
263
+ name: Cosine Accuracy@10
264
+ - type: cosine_precision@1
265
+ value: 0.7142857142857143
266
+ name: Cosine Precision@1
267
+ - type: cosine_precision@3
268
+ value: 0.28095238095238095
269
+ name: Cosine Precision@3
270
+ - type: cosine_precision@5
271
+ value: 0.17485714285714282
272
+ name: Cosine Precision@5
273
+ - type: cosine_precision@10
274
+ value: 0.09214285714285712
275
+ name: Cosine Precision@10
276
+ - type: cosine_recall@1
277
+ value: 0.7142857142857143
278
+ name: Cosine Recall@1
279
+ - type: cosine_recall@3
280
+ value: 0.8428571428571429
281
+ name: Cosine Recall@3
282
+ - type: cosine_recall@5
283
+ value: 0.8742857142857143
284
+ name: Cosine Recall@5
285
+ - type: cosine_recall@10
286
+ value: 0.9214285714285714
287
+ name: Cosine Recall@10
288
+ - type: cosine_ndcg@10
289
+ value: 0.8203162516614704
290
+ name: Cosine Ndcg@10
291
+ - type: cosine_mrr@10
292
+ value: 0.7878543083900227
293
+ name: Cosine Mrr@10
294
+ - type: cosine_map@100
295
+ value: 0.7909435994513387
296
+ name: Cosine Map@100
297
+ - task:
298
+ type: information-retrieval
299
+ name: Information Retrieval
300
+ dataset:
301
+ name: dim 64
302
+ type: dim_64
303
+ metrics:
304
+ - type: cosine_accuracy@1
305
+ value: 0.6828571428571428
306
+ name: Cosine Accuracy@1
307
+ - type: cosine_accuracy@3
308
+ value: 0.81
309
+ name: Cosine Accuracy@3
310
+ - type: cosine_accuracy@5
311
+ value: 0.85
312
+ name: Cosine Accuracy@5
313
+ - type: cosine_accuracy@10
314
+ value: 0.9042857142857142
315
+ name: Cosine Accuracy@10
316
+ - type: cosine_precision@1
317
+ value: 0.6828571428571428
318
+ name: Cosine Precision@1
319
+ - type: cosine_precision@3
320
+ value: 0.27
321
+ name: Cosine Precision@3
322
+ - type: cosine_precision@5
323
+ value: 0.16999999999999998
324
+ name: Cosine Precision@5
325
+ - type: cosine_precision@10
326
+ value: 0.09042857142857143
327
+ name: Cosine Precision@10
328
+ - type: cosine_recall@1
329
+ value: 0.6828571428571428
330
+ name: Cosine Recall@1
331
+ - type: cosine_recall@3
332
+ value: 0.81
333
+ name: Cosine Recall@3
334
+ - type: cosine_recall@5
335
+ value: 0.85
336
+ name: Cosine Recall@5
337
+ - type: cosine_recall@10
338
+ value: 0.9042857142857142
339
+ name: Cosine Recall@10
340
+ - type: cosine_ndcg@10
341
+ value: 0.7926026006937184
342
+ name: Cosine Ndcg@10
343
+ - type: cosine_mrr@10
344
+ value: 0.7570844671201811
345
+ name: Cosine Mrr@10
346
+ - type: cosine_map@100
347
+ value: 0.7606949750229449
348
+ name: Cosine Map@100
349
+ ---
350
+
351
+ # BGE base Financial Matryoshka
352
+
353
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
354
+
355
+ ## Model Details
356
+
357
+ ### Model Description
358
+ - **Model Type:** Sentence Transformer
359
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
360
+ - **Maximum Sequence Length:** 512 tokens
361
+ - **Output Dimensionality:** 768 tokens
362
+ - **Similarity Function:** Cosine Similarity
363
+ <!-- - **Training Dataset:** Unknown -->
364
+ - **Language:** en
365
+ - **License:** apache-2.0
366
+
367
+ ### Model Sources
368
+
369
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
370
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
371
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
372
+
373
+ ### Full Model Architecture
374
+
375
+ ```
376
+ SentenceTransformer(
377
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
378
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
379
+ (2): Normalize()
380
+ )
381
+ ```
382
+
383
+ ## Usage
384
+
385
+ ### Direct Usage (Sentence Transformers)
386
+
387
+ First install the Sentence Transformers library:
388
+
389
+ ```bash
390
+ pip install -U sentence-transformers
391
+ ```
392
+
393
+ Then you can load this model and run inference.
394
+ ```python
395
+ from sentence_transformers import SentenceTransformer
396
+
397
+ # Download from the 🤗 Hub
398
+ model = SentenceTransformer("NickyNicky/bge-base-financial-matryoshka")
399
+ # Run inference
400
+ sentences = [
401
+ 'Non-GAAP earnings from operations and non-GAAP operating profit margin consist of earnings from operations or earnings from operations as a percentage of net revenue excluding the items mentioned above and charges relating to the amortization of intangible assets, goodwill impairment, transformation costs and acquisition, disposition and other related charges. Hewlett Packard Enterprise excludes these items because they are non-cash expenses, are significantly impacted by the timing and magnitude of acquisitions, and are inconsistent in amount and frequency.',
402
+ "What specific charges are excluded from Hewlett Packard Enterprise's non-GAAP operating profit margin and why?",
403
+ 'How many shares were outstanding at the beginning of 2023 and what was their aggregate intrinsic value?',
404
+ ]
405
+ embeddings = model.encode(sentences)
406
+ print(embeddings.shape)
407
+ # [3, 768]
408
+
409
+ # Get the similarity scores for the embeddings
410
+ similarities = model.similarity(embeddings, embeddings)
411
+ print(similarities.shape)
412
+ # [3, 3]
413
+ ```
414
+
415
+ <!--
416
+ ### Direct Usage (Transformers)
417
+
418
+ <details><summary>Click to see the direct usage in Transformers</summary>
419
+
420
+ </details>
421
+ -->
422
+
423
+ <!--
424
+ ### Downstream Usage (Sentence Transformers)
425
+
426
+ You can finetune this model on your own dataset.
427
+
428
+ <details><summary>Click to expand</summary>
429
+
430
+ </details>
431
+ -->
432
+
433
+ <!--
434
+ ### Out-of-Scope Use
435
+
436
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
437
+ -->
438
+
439
+ ## Evaluation
440
+
441
+ ### Metrics
442
+
443
+ #### Information Retrieval
444
+ * Dataset: `dim_768`
445
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
446
+
447
+ | Metric | Value |
448
+ |:--------------------|:-----------|
449
+ | cosine_accuracy@1 | 0.7157 |
450
+ | cosine_accuracy@3 | 0.8571 |
451
+ | cosine_accuracy@5 | 0.8871 |
452
+ | cosine_accuracy@10 | 0.9314 |
453
+ | cosine_precision@1 | 0.7157 |
454
+ | cosine_precision@3 | 0.2857 |
455
+ | cosine_precision@5 | 0.1774 |
456
+ | cosine_precision@10 | 0.0931 |
457
+ | cosine_recall@1 | 0.7157 |
458
+ | cosine_recall@3 | 0.8571 |
459
+ | cosine_recall@5 | 0.8871 |
460
+ | cosine_recall@10 | 0.9314 |
461
+ | cosine_ndcg@10 | 0.8275 |
462
+ | cosine_mrr@10 | 0.794 |
463
+ | **cosine_map@100** | **0.7969** |
464
+
465
+ #### Information Retrieval
466
+ * Dataset: `dim_512`
467
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
468
+
469
+ | Metric | Value |
470
+ |:--------------------|:-----------|
471
+ | cosine_accuracy@1 | 0.7143 |
472
+ | cosine_accuracy@3 | 0.8571 |
473
+ | cosine_accuracy@5 | 0.8871 |
474
+ | cosine_accuracy@10 | 0.9314 |
475
+ | cosine_precision@1 | 0.7143 |
476
+ | cosine_precision@3 | 0.2857 |
477
+ | cosine_precision@5 | 0.1774 |
478
+ | cosine_precision@10 | 0.0931 |
479
+ | cosine_recall@1 | 0.7143 |
480
+ | cosine_recall@3 | 0.8571 |
481
+ | cosine_recall@5 | 0.8871 |
482
+ | cosine_recall@10 | 0.9314 |
483
+ | cosine_ndcg@10 | 0.8268 |
484
+ | cosine_mrr@10 | 0.793 |
485
+ | **cosine_map@100** | **0.7958** |
486
+
487
+ #### Information Retrieval
488
+ * Dataset: `dim_256`
489
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
490
+
491
+ | Metric | Value |
492
+ |:--------------------|:-----------|
493
+ | cosine_accuracy@1 | 0.7157 |
494
+ | cosine_accuracy@3 | 0.8514 |
495
+ | cosine_accuracy@5 | 0.8829 |
496
+ | cosine_accuracy@10 | 0.93 |
497
+ | cosine_precision@1 | 0.7157 |
498
+ | cosine_precision@3 | 0.2838 |
499
+ | cosine_precision@5 | 0.1766 |
500
+ | cosine_precision@10 | 0.093 |
501
+ | cosine_recall@1 | 0.7157 |
502
+ | cosine_recall@3 | 0.8514 |
503
+ | cosine_recall@5 | 0.8829 |
504
+ | cosine_recall@10 | 0.93 |
505
+ | cosine_ndcg@10 | 0.8255 |
506
+ | cosine_mrr@10 | 0.7919 |
507
+ | **cosine_map@100** | **0.7946** |
508
+
509
+ #### Information Retrieval
510
+ * Dataset: `dim_128`
511
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
512
+
513
+ | Metric | Value |
514
+ |:--------------------|:-----------|
515
+ | cosine_accuracy@1 | 0.7143 |
516
+ | cosine_accuracy@3 | 0.8429 |
517
+ | cosine_accuracy@5 | 0.8743 |
518
+ | cosine_accuracy@10 | 0.9214 |
519
+ | cosine_precision@1 | 0.7143 |
520
+ | cosine_precision@3 | 0.281 |
521
+ | cosine_precision@5 | 0.1749 |
522
+ | cosine_precision@10 | 0.0921 |
523
+ | cosine_recall@1 | 0.7143 |
524
+ | cosine_recall@3 | 0.8429 |
525
+ | cosine_recall@5 | 0.8743 |
526
+ | cosine_recall@10 | 0.9214 |
527
+ | cosine_ndcg@10 | 0.8203 |
528
+ | cosine_mrr@10 | 0.7879 |
529
+ | **cosine_map@100** | **0.7909** |
530
+
531
+ #### Information Retrieval
532
+ * Dataset: `dim_64`
533
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
534
+
535
+ | Metric | Value |
536
+ |:--------------------|:-----------|
537
+ | cosine_accuracy@1 | 0.6829 |
538
+ | cosine_accuracy@3 | 0.81 |
539
+ | cosine_accuracy@5 | 0.85 |
540
+ | cosine_accuracy@10 | 0.9043 |
541
+ | cosine_precision@1 | 0.6829 |
542
+ | cosine_precision@3 | 0.27 |
543
+ | cosine_precision@5 | 0.17 |
544
+ | cosine_precision@10 | 0.0904 |
545
+ | cosine_recall@1 | 0.6829 |
546
+ | cosine_recall@3 | 0.81 |
547
+ | cosine_recall@5 | 0.85 |
548
+ | cosine_recall@10 | 0.9043 |
549
+ | cosine_ndcg@10 | 0.7926 |
550
+ | cosine_mrr@10 | 0.7571 |
551
+ | **cosine_map@100** | **0.7607** |
552
+
553
+ <!--
554
+ ## Bias, Risks and Limitations
555
+
556
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
557
+ -->
558
+
559
+ <!--
560
+ ### Recommendations
561
+
562
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
563
+ -->
564
+
565
+ ## Training Details
566
+
567
+ ### Training Dataset
568
+
569
+ #### Unnamed Dataset
570
+
571
+
572
+ * Size: 6,300 training samples
573
+ * Columns: <code>positive</code> and <code>anchor</code>
574
+ * Approximate statistics based on the first 1000 samples:
575
+ | | positive | anchor |
576
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
577
+ | type | string | string |
578
+ | details | <ul><li>min: 6 tokens</li><li>mean: 46.8 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.89 tokens</li><li>max: 51 tokens</li></ul> |
579
+ * Samples:
580
+ | positive | anchor |
581
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------|
582
+ | <code>Retail sales mix by product type for company-operated stores shows beverages at 74%, food at 22%, and other items at 4%.</code> | <code>What are the primary products sold in Starbucks company-operated stores?</code> |
583
+ | <code>The pre-tax adjustment for transformation costs was $136 in 2021 and $111 in 2020. Transformation costs primarily include costs related to store and business closure costs and third party professional consulting fees associated with business transformation and cost saving initiatives.</code> | <code>What was the purpose of pre-tax adjustments for transformation costs by The Kroger Co.?</code> |
584
+ | <code>HP's Consolidated Financial Statements are prepared in accordance with United States generally accepted accounting principles (GAAP).</code> | <code>What principles do HP's Consolidated Financial Statements adhere to?</code> |
585
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
586
+ ```json
587
+ {
588
+ "loss": "MultipleNegativesRankingLoss",
589
+ "matryoshka_dims": [
590
+ 768,
591
+ 512,
592
+ 256,
593
+ 128,
594
+ 64
595
+ ],
596
+ "matryoshka_weights": [
597
+ 1,
598
+ 1,
599
+ 1,
600
+ 1,
601
+ 1
602
+ ],
603
+ "n_dims_per_step": -1
604
+ }
605
+ ```
606
+
607
+ ### Training Hyperparameters
608
+ #### Non-Default Hyperparameters
609
+
610
+ - `eval_strategy`: epoch
611
+ - `per_device_train_batch_size`: 40
612
+ - `per_device_eval_batch_size`: 16
613
+ - `gradient_accumulation_steps`: 16
614
+ - `learning_rate`: 2e-05
615
+ - `num_train_epochs`: 10
616
+ - `lr_scheduler_type`: cosine
617
+ - `warmup_ratio`: 0.1
618
+ - `bf16`: True
619
+ - `tf32`: True
620
+ - `optim`: adamw_torch_fused
621
+ - `batch_sampler`: no_duplicates
622
+
623
+ #### All Hyperparameters
624
+ <details><summary>Click to expand</summary>
625
+
626
+ - `overwrite_output_dir`: False
627
+ - `do_predict`: False
628
+ - `eval_strategy`: epoch
629
+ - `prediction_loss_only`: True
630
+ - `per_device_train_batch_size`: 40
631
+ - `per_device_eval_batch_size`: 16
632
+ - `per_gpu_train_batch_size`: None
633
+ - `per_gpu_eval_batch_size`: None
634
+ - `gradient_accumulation_steps`: 16
635
+ - `eval_accumulation_steps`: None
636
+ - `learning_rate`: 2e-05
637
+ - `weight_decay`: 0.0
638
+ - `adam_beta1`: 0.9
639
+ - `adam_beta2`: 0.999
640
+ - `adam_epsilon`: 1e-08
641
+ - `max_grad_norm`: 1.0
642
+ - `num_train_epochs`: 10
643
+ - `max_steps`: -1
644
+ - `lr_scheduler_type`: cosine
645
+ - `lr_scheduler_kwargs`: {}
646
+ - `warmup_ratio`: 0.1
647
+ - `warmup_steps`: 0
648
+ - `log_level`: passive
649
+ - `log_level_replica`: warning
650
+ - `log_on_each_node`: True
651
+ - `logging_nan_inf_filter`: True
652
+ - `save_safetensors`: True
653
+ - `save_on_each_node`: False
654
+ - `save_only_model`: False
655
+ - `restore_callback_states_from_checkpoint`: False
656
+ - `no_cuda`: False
657
+ - `use_cpu`: False
658
+ - `use_mps_device`: False
659
+ - `seed`: 42
660
+ - `data_seed`: None
661
+ - `jit_mode_eval`: False
662
+ - `use_ipex`: False
663
+ - `bf16`: True
664
+ - `fp16`: False
665
+ - `fp16_opt_level`: O1
666
+ - `half_precision_backend`: auto
667
+ - `bf16_full_eval`: False
668
+ - `fp16_full_eval`: False
669
+ - `tf32`: True
670
+ - `local_rank`: 0
671
+ - `ddp_backend`: None
672
+ - `tpu_num_cores`: None
673
+ - `tpu_metrics_debug`: False
674
+ - `debug`: []
675
+ - `dataloader_drop_last`: False
676
+ - `dataloader_num_workers`: 0
677
+ - `dataloader_prefetch_factor`: None
678
+ - `past_index`: -1
679
+ - `disable_tqdm`: False
680
+ - `remove_unused_columns`: True
681
+ - `label_names`: None
682
+ - `load_best_model_at_end`: False
683
+ - `ignore_data_skip`: False
684
+ - `fsdp`: []
685
+ - `fsdp_min_num_params`: 0
686
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
687
+ - `fsdp_transformer_layer_cls_to_wrap`: None
688
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
689
+ - `deepspeed`: None
690
+ - `label_smoothing_factor`: 0.0
691
+ - `optim`: adamw_torch_fused
692
+ - `optim_args`: None
693
+ - `adafactor`: False
694
+ - `group_by_length`: False
695
+ - `length_column_name`: length
696
+ - `ddp_find_unused_parameters`: None
697
+ - `ddp_bucket_cap_mb`: None
698
+ - `ddp_broadcast_buffers`: False
699
+ - `dataloader_pin_memory`: True
700
+ - `dataloader_persistent_workers`: False
701
+ - `skip_memory_metrics`: True
702
+ - `use_legacy_prediction_loop`: False
703
+ - `push_to_hub`: False
704
+ - `resume_from_checkpoint`: None
705
+ - `hub_model_id`: None
706
+ - `hub_strategy`: every_save
707
+ - `hub_private_repo`: False
708
+ - `hub_always_push`: False
709
+ - `gradient_checkpointing`: False
710
+ - `gradient_checkpointing_kwargs`: None
711
+ - `include_inputs_for_metrics`: False
712
+ - `eval_do_concat_batches`: True
713
+ - `fp16_backend`: auto
714
+ - `push_to_hub_model_id`: None
715
+ - `push_to_hub_organization`: None
716
+ - `mp_parameters`:
717
+ - `auto_find_batch_size`: False
718
+ - `full_determinism`: False
719
+ - `torchdynamo`: None
720
+ - `ray_scope`: last
721
+ - `ddp_timeout`: 1800
722
+ - `torch_compile`: False
723
+ - `torch_compile_backend`: None
724
+ - `torch_compile_mode`: None
725
+ - `dispatch_batches`: None
726
+ - `split_batches`: None
727
+ - `include_tokens_per_second`: False
728
+ - `include_num_input_tokens_seen`: False
729
+ - `neftune_noise_alpha`: None
730
+ - `optim_target_modules`: None
731
+ - `batch_eval_metrics`: False
732
+ - `batch_sampler`: no_duplicates
733
+ - `multi_dataset_batch_sampler`: proportional
734
+
735
+ </details>
736
+
737
+ ### Training Logs
738
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
739
+ |:------:|:----:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
740
+ | 0.9114 | 9 | - | 0.7311 | 0.7527 | 0.7618 | 0.6911 | 0.7612 |
741
+ | 1.0127 | 10 | 1.9734 | - | - | - | - | - |
742
+ | 1.9241 | 19 | - | 0.7638 | 0.7748 | 0.7800 | 0.7412 | 0.7836 |
743
+ | 2.0253 | 20 | 0.8479 | - | - | - | - | - |
744
+ | 2.9367 | 29 | - | 0.7775 | 0.7842 | 0.7902 | 0.7473 | 0.7912 |
745
+ | 3.0380 | 30 | 0.524 | - | - | - | - | - |
746
+ | 3.9494 | 39 | - | 0.7831 | 0.7860 | 0.7915 | 0.7556 | 0.7939 |
747
+ | 4.0506 | 40 | 0.3826 | - | - | - | - | - |
748
+ | 4.9620 | 49 | - | 0.7896 | 0.7915 | 0.7927 | 0.7616 | 0.7983 |
749
+ | 5.0633 | 50 | 0.3165 | - | - | - | - | - |
750
+ | 5.9747 | 59 | - | 0.7925 | 0.7946 | 0.7943 | 0.7603 | 0.7978 |
751
+ | 6.0759 | 60 | 0.2599 | - | - | - | - | - |
752
+ | 6.9873 | 69 | - | 0.7918 | 0.7949 | 0.7951 | 0.7608 | 0.7976 |
753
+ | 7.0886 | 70 | 0.2424 | - | - | - | - | - |
754
+ | 8.0 | 79 | - | 0.7925 | 0.7956 | 0.7959 | 0.7612 | 0.7989 |
755
+ | 8.1013 | 80 | 0.2243 | - | - | - | - | - |
756
+ | 8.9114 | 88 | - | 0.7927 | 0.7956 | 0.7961 | 0.7610 | 0.7983 |
757
+ | 9.1139 | 90 | 0.2222 | 0.7909 | 0.7946 | 0.7958 | 0.7607 | 0.7969 |
758
+
759
+
760
+ ### Framework Versions
761
+ - Python: 3.10.12
762
+ - Sentence Transformers: 3.0.1
763
+ - Transformers: 4.41.2
764
+ - PyTorch: 2.2.0+cu121
765
+ - Accelerate: 0.31.0
766
+ - Datasets: 2.19.1
767
+ - Tokenizers: 0.19.1
768
+
769
+ ## Citation
770
+
771
+ ### BibTeX
772
+
773
+ #### Sentence Transformers
774
+ ```bibtex
775
+ @inproceedings{reimers-2019-sentence-bert,
776
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
777
+ author = "Reimers, Nils and Gurevych, Iryna",
778
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
779
+ month = "11",
780
+ year = "2019",
781
+ publisher = "Association for Computational Linguistics",
782
+ url = "https://arxiv.org/abs/1908.10084",
783
+ }
784
+ ```
785
+
786
+ #### MatryoshkaLoss
787
+ ```bibtex
788
+ @misc{kusupati2024matryoshka,
789
+ title={Matryoshka Representation Learning},
790
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
791
+ year={2024},
792
+ eprint={2205.13147},
793
+ archivePrefix={arXiv},
794
+ primaryClass={cs.LG}
795
+ }
796
+ ```
797
+
798
+ #### MultipleNegativesRankingLoss
799
+ ```bibtex
800
+ @misc{henderson2017efficient,
801
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
802
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
803
+ year={2017},
804
+ eprint={1705.00652},
805
+ archivePrefix={arXiv},
806
+ primaryClass={cs.CL}
807
+ }
808
+ ```
809
+
810
+ <!--
811
+ ## Glossary
812
+
813
+ *Clearly define terms in order to be accessible across audiences.*
814
+ -->
815
+
816
+ <!--
817
+ ## Model Card Authors
818
+
819
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
820
+ -->
821
+
822
+ <!--
823
+ ## Model Card Contact
824
+
825
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
826
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c3641bb32d2b41024a3dff23be2f0a524b09cdc40a9cef0a224d1beaacb5ce3
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff