metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:872
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
datasets: []
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: >-
amendements to PIPA came into force on 05 Auguest 2020. 2 Some parts of
PIPA also apply to online service providers. 3 The latest amendment to
PIPA has introduced the concept of ‘pseudonymised data’ for the
feasibility of data economy. 4 Under the PIPA, all data handlers must
appoint a chief privacy officer. 5 Cookies, IP information, etc. are also
regulated by the PIPA as personal information. 6 Breach of a corrective
order issued by the PIPC can lead to an administrative fine of not more
than KRW 30 million. ### Forrester Names Securiti a Leader in the Privacy
Management Wave Q4, 2021 Read the Report ### Securiti named a Leader in
the IDC MarketScape for Data Privacy Compliance Software Read the Report
At
sentences:
- What recognition did Securiti receive in the field of data privacy?
- >-
How does the Office of the Privacy Commissioner educate agencies and
organisations in breach of the law?
- >-
What is the concept of 'pseudonymised data' introduced by the latest
amendment to PIPA?
- source_sentence: >-
18th, 2020, and it has been in effect since then. ## Influence of GDPR It
is well known that the LGPD was drafted and based on the GDPR, so much so
that some people call it Brazil’s GDPR. The LGPD contains 65 articles that
provide individuals with data subject rights, impose obligations upon
organizations for lawful processing of personal data, require notification
of data breaches to the supervisory authority and affected data subjects,
create a national supervisory authority to interpret and enforce the law,
regulate international transfer of data, define lawful consent collection
guidelines and impose heavy penalties on violators similar to the GDPR. ##
Essence of the LGPD Law LGPD provides: 9 data subject rights requests
exercisable by individual data subjects; 10 legal bases for lawful
processing; Obligatory and transparent disclosure requirements for
organizations to contain within their privacy policy; Consent collection
and management requirements for organizations;
sentences:
- >-
What are the penalties for misusing personal data and obstructing
investigations under the PDPA and its amendments?
- >-
Which data privacy regulation, similar to the GDPR, had a significant
impact in the US after the promulgation of the GDPR in the EU?
- >-
What are the requirements for consent collection and management under
the LGPD law?
- source_sentence: >-
to the Privacy Act of 2020. ## Obligations for Organisations Under the
Privacy Act 2020 Under the Privacy Act’s jurisdiction, all organizations
have specific responsibilities or obligations towards their users. The
most important of these obligations include the following: ### 1\. Lawful
Purpose Requirements While data processing has become immensely important
for nearly all businesses, the Privacy Act ensures that such data
processing can only occur if the organization collecting the data has a
lawful purpose for the collection and that collection of the information
is necessary for that purpose. It is also expected that the information
will be collected directly from the individual concerned. When collecting
personal information, organizations are required to ensure the individual
is aware of: The fact that the information is being collected; The purpose
for which it is being collected; The intended recipients of the
information; The details of the organization that will be collecting and
holding the information; Any laws that authorize or
sentences:
- >-
What are the obligations of organizations towards users under the
Privacy Act of 2020, including lawful purpose and consent requirements?
- >-
What is the role of the Spanish Data Protection Agency in enforcing data
protection legislation in Spain and how does it ensure its effectiveness
in enforcing the law across the country?
- >-
What is the purpose of Kuwait's Data Privacy Protection Regulation
(DPPR)?
- source_sentence: >-
## Right of Access to Personal Data: What To Know The wealth of data
available to organizations globally has brought tremendous improvements in
their ability to target and cater to their customers' needs.
Organizations... View More September 13, 2023 ## Kuwait's DPPR Kuwait
didn’t have any data protection law until the Communication and
Information Technology Regulatory Authority (CITRA) introduced the Data
Privacy Protection Regulation (DPPR). The... ## Take a Product Tour See
how easy it is to manage privacy compliance with robotic automation. Watch
a demo At Securiti, our mission is to enable enterprises to safely harness
the incredible power of data and the cloud by controlling the complex
security, privacy and compliance risks. Copyright (C) 2023 Securiti
Sitemap XML Sitemap #### Newsletter #### Company About Us , Personal
Data: What To Know The wealth of data available to organizations globally
has brought tremendous improvements in their ability to target and cater
to their customers' needs. Organizations... View More September 13, 2023
## Kuwait's DPPR Kuwait didn’t have any data protection law until the
Communication and Information Technology Regulatory Authority (CITRA)
introduced the Data Privacy Protection Regulation (DPPR). The... ## Take a
Product Tour See how easy it is to manage privacy compliance with robotic
automation. Watch a demo At Securiti, our mission is to enable enterprises
to safely harness the incredible power of data and the cloud by
controlling the complex security, privacy and compliance risks. Copyright
(C) 2023 Securiti Sitemap XML Sitemap #### Newsletter #### Company About
Us Careers Contact Us
sentences:
- What is the definition of personal data according to the PDPO?
- >-
What are the requirements for organizations to notify the regulatory
authority in case of a data breach according to the PDPL and
accompanying Regulations?
- Why did CITRA introduce Kuwait's DPPR?
- source_sentence: >-
View Salesforce View Workday View GCP View Azure View Oracle View Learn
more Regulations Automate compliance with global privacy regulations. US
California CCPA View US California CPRA View European Union GDPR View
Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View
\+ More View Learn more Roles Identify data risk and enable protection &
control. Privacy View Security View Governance View Marketing View
Resources Blog Read through our articles written by industry experts
Collateral Product broch
sentences:
- What resources are available for learning more about GCP?
- >-
What are the penalties for unauthorized personal data transfer,
including maximum fines for data fiduciaries in various scenarios?
- What are the key provisions of South Korea's data privacy law?
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.36082474226804123
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5463917525773195
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5773195876288659
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6907216494845361
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36082474226804123
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.18213058419243983
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11546391752577319
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0690721649484536
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36082474226804123
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5463917525773195
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5773195876288659
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6907216494845361
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5180083093560761
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.46394207167403045
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.47681473846718614
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.36082474226804123
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5360824742268041
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5773195876288659
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7010309278350515
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.36082474226804123
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.17869415807560135
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11546391752577319
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07010309278350516
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.36082474226804123
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5360824742268041
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5773195876288659
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7010309278350515
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5187124999739344
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4620520373097693
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4737872459927759
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.32989690721649484
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4948453608247423
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5773195876288659
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6804123711340206
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32989690721649484
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1649484536082474
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11546391752577319
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06804123711340206
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.32989690721649484
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4948453608247423
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5773195876288659
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6804123711340206
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4929368061598079
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.43412698412698414
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.44657071536051934
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.3402061855670103
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.5051546391752577
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5670103092783505
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6907216494845361
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3402061855670103
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1683848797250859
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1134020618556701
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0690721649484536
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3402061855670103
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.5051546391752577
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5670103092783505
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6907216494845361
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.5032662355781912
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4449517263950254
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4553038204145196
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.32989690721649484
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4948453608247423
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5567010309278351
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6597938144329897
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.32989690721649484
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1649484536082474
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11134020618556702
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06597938144329896
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.32989690721649484
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4948453608247423
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5567010309278351
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6597938144329897
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.481245330711533
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.42577319587628865
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.43965778950983864
name: Cosine Map@100
SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v12")
sentences = [
"View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Learn more Roles Identify data risk and enable protection & control. Privacy View Security View Governance View Marketing View Resources Blog Read through our articles written by industry experts Collateral Product broch",
'What resources are available for learning more about GCP?',
"What are the key provisions of South Korea's data privacy law?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3608 |
cosine_accuracy@3 |
0.5464 |
cosine_accuracy@5 |
0.5773 |
cosine_accuracy@10 |
0.6907 |
cosine_precision@1 |
0.3608 |
cosine_precision@3 |
0.1821 |
cosine_precision@5 |
0.1155 |
cosine_precision@10 |
0.0691 |
cosine_recall@1 |
0.3608 |
cosine_recall@3 |
0.5464 |
cosine_recall@5 |
0.5773 |
cosine_recall@10 |
0.6907 |
cosine_ndcg@10 |
0.518 |
cosine_mrr@10 |
0.4639 |
cosine_map@100 |
0.4768 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3608 |
cosine_accuracy@3 |
0.5361 |
cosine_accuracy@5 |
0.5773 |
cosine_accuracy@10 |
0.701 |
cosine_precision@1 |
0.3608 |
cosine_precision@3 |
0.1787 |
cosine_precision@5 |
0.1155 |
cosine_precision@10 |
0.0701 |
cosine_recall@1 |
0.3608 |
cosine_recall@3 |
0.5361 |
cosine_recall@5 |
0.5773 |
cosine_recall@10 |
0.701 |
cosine_ndcg@10 |
0.5187 |
cosine_mrr@10 |
0.4621 |
cosine_map@100 |
0.4738 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3299 |
cosine_accuracy@3 |
0.4948 |
cosine_accuracy@5 |
0.5773 |
cosine_accuracy@10 |
0.6804 |
cosine_precision@1 |
0.3299 |
cosine_precision@3 |
0.1649 |
cosine_precision@5 |
0.1155 |
cosine_precision@10 |
0.068 |
cosine_recall@1 |
0.3299 |
cosine_recall@3 |
0.4948 |
cosine_recall@5 |
0.5773 |
cosine_recall@10 |
0.6804 |
cosine_ndcg@10 |
0.4929 |
cosine_mrr@10 |
0.4341 |
cosine_map@100 |
0.4466 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3402 |
cosine_accuracy@3 |
0.5052 |
cosine_accuracy@5 |
0.567 |
cosine_accuracy@10 |
0.6907 |
cosine_precision@1 |
0.3402 |
cosine_precision@3 |
0.1684 |
cosine_precision@5 |
0.1134 |
cosine_precision@10 |
0.0691 |
cosine_recall@1 |
0.3402 |
cosine_recall@3 |
0.5052 |
cosine_recall@5 |
0.567 |
cosine_recall@10 |
0.6907 |
cosine_ndcg@10 |
0.5033 |
cosine_mrr@10 |
0.445 |
cosine_map@100 |
0.4553 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.3299 |
cosine_accuracy@3 |
0.4948 |
cosine_accuracy@5 |
0.5567 |
cosine_accuracy@10 |
0.6598 |
cosine_precision@1 |
0.3299 |
cosine_precision@3 |
0.1649 |
cosine_precision@5 |
0.1113 |
cosine_precision@10 |
0.066 |
cosine_recall@1 |
0.3299 |
cosine_recall@3 |
0.4948 |
cosine_recall@5 |
0.5567 |
cosine_recall@10 |
0.6598 |
cosine_ndcg@10 |
0.4812 |
cosine_mrr@10 |
0.4258 |
cosine_map@100 |
0.4397 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 872 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 89 tokens
- mean: 229.38 tokens
- max: 414 tokens
|
- min: 9 tokens
- mean: 21.92 tokens
- max: 102 tokens
|
- Samples:
positive |
anchor |
controller should inform the data subject in every situation where his or her personal data is processed. The LPPD provides a general requirement to provide information on the collection methods but does not explicitly refer to automated decision-making or profiling. vs Articles: 5 14, Recitals: 58 63 This right requires the controller to provide the following information to the data subject when requested. This should be given in a concise, transparent, intelligible, and easily accessible form, using plain language: The identity and contact details of the controller, controller’s representative, and DPO, where applicable The purpose and the legal basis of the processing The categories of personal data concerned The recipients of the personal data The appropriate or suitable safeguards and the means to obtain a copy of them or where they have been made available The controller must provide information necessary to ensure fair and transparent processing whether or not the personal |
What information must the controller provide regarding their identity and contact details? |
and deletions, and manage all vendor contracts and compliance documents. ## Key Rights Under Ghana’s Data Protection Act 2012 Right to be Informed : Data subjects have the right to be informed of the processing of their personal data and the purposes for which the data is processed. Right to Access: Data subjects have the right to obtain confirmation whether or not the controller holds personal data about them, access their personal data, and obtain descriptions of data recipients. Right to Rectification : Under the right to rectification, data subjects can request the correction of their data. Right to Erasure: Data subjects have the right to request the erasure and destruction of the data that is no longer needed by the organization. Right to Object: The data subject has the right to prevent the data controller from processing personal data if such processing causes or is likely to cause unwarranted damage or distress to the data |
What are the key rights provided to data subjects under Ghana's Data Protection Act 2012? |
aim to protect personal data, they have differences in scope, requirements, and applicability. PDPA applies to Thailand, while GDPR applies to the European Union. The effect of PDPA in Thailand is to regulate how personal data is processed, collected, used, and protected by individuals and organizations in the country. Thailand's PDPA includes provisions related to personal data breach notifications, requiring data controllers to notify the Personal Data Protection Committee (PDPC) of a personal data breach as soon as possible, preferably within 72 hours of becoming aware of it. The principles of PDPA in Thailand include obtaining consent, especially for minors, ensuring data security, issuing timely data breach notifications, designating a data protection officer, conducting data protection impact assessments, maintaining a record of processing activities, and ensuring adequate standards when transferring data across borders. ## Join Our Newsletter Get all the latest information, law updates and more delivered to your inbox ### Share |
What is the role of obtaining consent in Thailand's PDPA? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
learning_rate
: 2e-05
num_train_epochs
: 10
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 10
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.3571 |
10 |
6.8967 |
- |
- |
- |
- |
- |
0.7143 |
20 |
6.1128 |
- |
- |
- |
- |
- |
1.0 |
28 |
- |
0.4344 |
0.4387 |
0.4857 |
0.3831 |
0.4515 |
1.0714 |
30 |
4.4294 |
- |
- |
- |
- |
- |
1.4286 |
40 |
3.2369 |
- |
- |
- |
- |
- |
1.7857 |
50 |
3.2624 |
- |
- |
- |
- |
- |
2.0 |
56 |
- |
0.4345 |
0.4456 |
0.4752 |
0.3885 |
0.4672 |
2.1429 |
60 |
2.1973 |
- |
- |
- |
- |
- |
2.5 |
70 |
1.815 |
- |
- |
- |
- |
- |
2.8571 |
80 |
1.8725 |
- |
- |
- |
- |
- |
3.0 |
84 |
- |
0.4636 |
0.4469 |
0.4781 |
0.4012 |
0.4765 |
3.2143 |
90 |
1.2027 |
- |
- |
- |
- |
- |
3.5714 |
100 |
1.3053 |
- |
- |
- |
- |
- |
3.9286 |
110 |
1.1 |
- |
- |
- |
- |
- |
4.0 |
112 |
- |
0.4417 |
0.4282 |
0.4721 |
0.4154 |
0.4671 |
4.2857 |
120 |
0.8088 |
- |
- |
- |
- |
- |
4.6429 |
130 |
0.8744 |
- |
- |
- |
- |
- |
5.0 |
140 |
0.8075 |
0.4435 |
0.4443 |
0.4725 |
0.4116 |
0.4720 |
5.3571 |
150 |
0.5131 |
- |
- |
- |
- |
- |
5.7143 |
160 |
0.6387 |
- |
- |
- |
- |
- |
6.0 |
168 |
- |
0.4495 |
0.4375 |
0.4768 |
0.4363 |
0.4794 |
6.0714 |
170 |
0.5041 |
- |
- |
- |
- |
- |
6.4286 |
180 |
0.4053 |
- |
- |
- |
- |
- |
6.7857 |
190 |
0.5665 |
- |
- |
- |
- |
- |
7.0 |
196 |
- |
0.4549 |
0.4504 |
0.4721 |
0.4382 |
0.4792 |
7.1429 |
200 |
0.3854 |
- |
- |
- |
- |
- |
7.5 |
210 |
0.3085 |
- |
- |
- |
- |
- |
7.8571 |
220 |
0.461 |
- |
- |
- |
- |
- |
8.0 |
224 |
- |
0.4570 |
0.4465 |
0.4722 |
0.4399 |
0.4785 |
8.2143 |
230 |
0.2521 |
- |
- |
- |
- |
- |
8.5714 |
240 |
0.3944 |
- |
- |
- |
- |
- |
8.9286 |
250 |
0.3524 |
- |
- |
- |
- |
- |
9.0 |
252 |
- |
0.4533 |
0.4457 |
0.4736 |
0.4394 |
0.4764 |
9.2857 |
260 |
0.2825 |
- |
- |
- |
- |
- |
9.6429 |
270 |
0.3919 |
- |
- |
- |
- |
- |
10.0 |
280 |
0.4004 |
0.4553 |
0.4466 |
0.4738 |
0.4397 |
0.4768 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}