MugheesAwan11 commited on
Commit
1a6c31b
1 Parent(s): 64f346d

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,888 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_from_trainer
11
+ - dataset_size:872
12
+ - loss:MatryoshkaLoss
13
+ - loss:MultipleNegativesRankingLoss
14
+ base_model: BAAI/bge-base-en-v1.5
15
+ datasets: []
16
+ metrics:
17
+ - cosine_accuracy@1
18
+ - cosine_accuracy@3
19
+ - cosine_accuracy@5
20
+ - cosine_accuracy@10
21
+ - cosine_precision@1
22
+ - cosine_precision@3
23
+ - cosine_precision@5
24
+ - cosine_precision@10
25
+ - cosine_recall@1
26
+ - cosine_recall@3
27
+ - cosine_recall@5
28
+ - cosine_recall@10
29
+ - cosine_ndcg@10
30
+ - cosine_mrr@10
31
+ - cosine_map@100
32
+ widget:
33
+ - source_sentence: 'amendements to PIPA came into force on 05 Auguest 2020. 2 Some
34
+ parts of PIPA also apply to online service providers. 3 The latest amendment to
35
+ PIPA has introduced the concept of ‘pseudonymised data’ for the feasibility of
36
+ data economy. 4 Under the PIPA, all data handlers must appoint a chief privacy
37
+ officer. 5 Cookies, IP information, etc. are also regulated by the PIPA as personal
38
+ information. 6 Breach of a corrective order issued by the PIPC can lead to an
39
+ administrative fine of not more than KRW 30 million. ### Forrester Names Securiti
40
+ a Leader in the Privacy Management Wave Q4, 2021 Read the Report ### Securiti
41
+ named a Leader in the IDC MarketScape for Data Privacy Compliance Software Read
42
+ the Report At'
43
+ sentences:
44
+ - What recognition did Securiti receive in the field of data privacy?
45
+ - How does the Office of the Privacy Commissioner educate agencies and organisations
46
+ in breach of the law?
47
+ - What is the concept of 'pseudonymised data' introduced by the latest amendment
48
+ to PIPA?
49
+ - source_sentence: '18th, 2020, and it has been in effect since then. ## Influence
50
+ of GDPR It is well known that the LGPD was drafted and based on the GDPR, so much
51
+ so that some people call it Brazil’s GDPR. The LGPD contains 65 articles that
52
+ provide individuals with data subject rights, impose obligations upon organizations
53
+ for lawful processing of personal data, require notification of data breaches
54
+ to the supervisory authority and affected data subjects, create a national supervisory
55
+ authority to interpret and enforce the law, regulate international transfer of
56
+ data, define lawful consent collection guidelines and impose heavy penalties on
57
+ violators similar to the GDPR. ## Essence of the LGPD Law LGPD provides: 9 data
58
+ subject rights requests exercisable by individual data subjects; 10 legal bases
59
+ for lawful processing; Obligatory and transparent disclosure requirements for
60
+ organizations to contain within their privacy policy; Consent collection and management
61
+ requirements for organizations;'
62
+ sentences:
63
+ - What are the penalties for misusing personal data and obstructing investigations
64
+ under the PDPA and its amendments?
65
+ - Which data privacy regulation, similar to the GDPR, had a significant impact in
66
+ the US after the promulgation of the GDPR in the EU?
67
+ - What are the requirements for consent collection and management under the LGPD
68
+ law?
69
+ - source_sentence: 'to the Privacy Act of 2020. ## Obligations for Organisations Under
70
+ the Privacy Act 2020 Under the Privacy Act’s jurisdiction, all organizations have
71
+ specific responsibilities or obligations towards their users. The most important
72
+ of these obligations include the following: ### 1\. Lawful Purpose Requirements
73
+ While data processing has become immensely important for nearly all businesses,
74
+ the Privacy Act ensures that such data processing can only occur if the organization
75
+ collecting the data has a lawful purpose for the collection and that collection
76
+ of the information is necessary for that purpose. It is also expected that the
77
+ information will be collected directly from the individual concerned. When collecting
78
+ personal information, organizations are required to ensure the individual is aware
79
+ of: The fact that the information is being collected; The purpose for which it
80
+ is being collected; The intended recipients of the information; The details of
81
+ the organization that will be collecting and holding the information; Any laws
82
+ that authorize or'
83
+ sentences:
84
+ - What are the obligations of organizations towards users under the Privacy Act
85
+ of 2020, including lawful purpose and consent requirements?
86
+ - What is the role of the Spanish Data Protection Agency in enforcing data protection
87
+ legislation in Spain and how does it ensure its effectiveness in enforcing the
88
+ law across the country?
89
+ - What is the purpose of Kuwait's Data Privacy Protection Regulation (DPPR)?
90
+ - source_sentence: '## Right of Access to Personal Data: What To Know The wealth of
91
+ data available to organizations globally has brought tremendous improvements in
92
+ their ability to target and cater to their customers'' needs. Organizations...
93
+ View More September 13, 2023 ## Kuwait''s DPPR Kuwait didn’t have any data protection
94
+ law until the Communication and Information Technology Regulatory Authority (CITRA)
95
+ introduced the Data Privacy Protection Regulation (DPPR). The... ## Take a Product
96
+ Tour See how easy it is to manage privacy compliance with robotic automation.
97
+ Watch a demo At Securiti, our mission is to enable enterprises to safely harness
98
+ the incredible power of data and the cloud by controlling the complex security,
99
+ privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap
100
+ #### Newsletter #### Company About Us , Personal Data: What To Know The wealth
101
+ of data available to organizations globally has brought tremendous improvements
102
+ in their ability to target and cater to their customers'' needs. Organizations...
103
+ View More September 13, 2023 ## Kuwait''s DPPR Kuwait didn’t have any data protection
104
+ law until the Communication and Information Technology Regulatory Authority (CITRA)
105
+ introduced the Data Privacy Protection Regulation (DPPR). The... ## Take a Product
106
+ Tour See how easy it is to manage privacy compliance with robotic automation.
107
+ Watch a demo At Securiti, our mission is to enable enterprises to safely harness
108
+ the incredible power of data and the cloud by controlling the complex security,
109
+ privacy and compliance risks. Copyright (C) 2023 Securiti Sitemap XML Sitemap
110
+ #### Newsletter #### Company About Us Careers Contact Us'
111
+ sentences:
112
+ - What is the definition of personal data according to the PDPO?
113
+ - What are the requirements for organizations to notify the regulatory authority
114
+ in case of a data breach according to the PDPL and accompanying Regulations?
115
+ - Why did CITRA introduce Kuwait's DPPR?
116
+ - source_sentence: View Salesforce View Workday View GCP View Azure View Oracle View
117
+ Learn more Regulations Automate compliance with global privacy regulations. US
118
+ California CCPA View US California CPRA View European Union GDPR View Thailand’s
119
+ PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \+ More View Learn
120
+ more Roles Identify data risk and enable protection & control. Privacy View Security
121
+ View Governance View Marketing View Resources Blog Read through our articles written
122
+ by industry experts Collateral Product broch
123
+ sentences:
124
+ - What resources are available for learning more about GCP?
125
+ - What are the penalties for unauthorized personal data transfer, including maximum
126
+ fines for data fiduciaries in various scenarios?
127
+ - What are the key provisions of South Korea's data privacy law?
128
+ pipeline_tag: sentence-similarity
129
+ model-index:
130
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
131
+ results:
132
+ - task:
133
+ type: information-retrieval
134
+ name: Information Retrieval
135
+ dataset:
136
+ name: dim 768
137
+ type: dim_768
138
+ metrics:
139
+ - type: cosine_accuracy@1
140
+ value: 0.36082474226804123
141
+ name: Cosine Accuracy@1
142
+ - type: cosine_accuracy@3
143
+ value: 0.5463917525773195
144
+ name: Cosine Accuracy@3
145
+ - type: cosine_accuracy@5
146
+ value: 0.5773195876288659
147
+ name: Cosine Accuracy@5
148
+ - type: cosine_accuracy@10
149
+ value: 0.6907216494845361
150
+ name: Cosine Accuracy@10
151
+ - type: cosine_precision@1
152
+ value: 0.36082474226804123
153
+ name: Cosine Precision@1
154
+ - type: cosine_precision@3
155
+ value: 0.18213058419243983
156
+ name: Cosine Precision@3
157
+ - type: cosine_precision@5
158
+ value: 0.11546391752577319
159
+ name: Cosine Precision@5
160
+ - type: cosine_precision@10
161
+ value: 0.0690721649484536
162
+ name: Cosine Precision@10
163
+ - type: cosine_recall@1
164
+ value: 0.36082474226804123
165
+ name: Cosine Recall@1
166
+ - type: cosine_recall@3
167
+ value: 0.5463917525773195
168
+ name: Cosine Recall@3
169
+ - type: cosine_recall@5
170
+ value: 0.5773195876288659
171
+ name: Cosine Recall@5
172
+ - type: cosine_recall@10
173
+ value: 0.6907216494845361
174
+ name: Cosine Recall@10
175
+ - type: cosine_ndcg@10
176
+ value: 0.5180083093560761
177
+ name: Cosine Ndcg@10
178
+ - type: cosine_mrr@10
179
+ value: 0.46394207167403045
180
+ name: Cosine Mrr@10
181
+ - type: cosine_map@100
182
+ value: 0.47681473846718614
183
+ name: Cosine Map@100
184
+ - task:
185
+ type: information-retrieval
186
+ name: Information Retrieval
187
+ dataset:
188
+ name: dim 512
189
+ type: dim_512
190
+ metrics:
191
+ - type: cosine_accuracy@1
192
+ value: 0.36082474226804123
193
+ name: Cosine Accuracy@1
194
+ - type: cosine_accuracy@3
195
+ value: 0.5360824742268041
196
+ name: Cosine Accuracy@3
197
+ - type: cosine_accuracy@5
198
+ value: 0.5773195876288659
199
+ name: Cosine Accuracy@5
200
+ - type: cosine_accuracy@10
201
+ value: 0.7010309278350515
202
+ name: Cosine Accuracy@10
203
+ - type: cosine_precision@1
204
+ value: 0.36082474226804123
205
+ name: Cosine Precision@1
206
+ - type: cosine_precision@3
207
+ value: 0.17869415807560135
208
+ name: Cosine Precision@3
209
+ - type: cosine_precision@5
210
+ value: 0.11546391752577319
211
+ name: Cosine Precision@5
212
+ - type: cosine_precision@10
213
+ value: 0.07010309278350516
214
+ name: Cosine Precision@10
215
+ - type: cosine_recall@1
216
+ value: 0.36082474226804123
217
+ name: Cosine Recall@1
218
+ - type: cosine_recall@3
219
+ value: 0.5360824742268041
220
+ name: Cosine Recall@3
221
+ - type: cosine_recall@5
222
+ value: 0.5773195876288659
223
+ name: Cosine Recall@5
224
+ - type: cosine_recall@10
225
+ value: 0.7010309278350515
226
+ name: Cosine Recall@10
227
+ - type: cosine_ndcg@10
228
+ value: 0.5187124999739344
229
+ name: Cosine Ndcg@10
230
+ - type: cosine_mrr@10
231
+ value: 0.4620520373097693
232
+ name: Cosine Mrr@10
233
+ - type: cosine_map@100
234
+ value: 0.4737872459927759
235
+ name: Cosine Map@100
236
+ - task:
237
+ type: information-retrieval
238
+ name: Information Retrieval
239
+ dataset:
240
+ name: dim 256
241
+ type: dim_256
242
+ metrics:
243
+ - type: cosine_accuracy@1
244
+ value: 0.32989690721649484
245
+ name: Cosine Accuracy@1
246
+ - type: cosine_accuracy@3
247
+ value: 0.4948453608247423
248
+ name: Cosine Accuracy@3
249
+ - type: cosine_accuracy@5
250
+ value: 0.5773195876288659
251
+ name: Cosine Accuracy@5
252
+ - type: cosine_accuracy@10
253
+ value: 0.6804123711340206
254
+ name: Cosine Accuracy@10
255
+ - type: cosine_precision@1
256
+ value: 0.32989690721649484
257
+ name: Cosine Precision@1
258
+ - type: cosine_precision@3
259
+ value: 0.1649484536082474
260
+ name: Cosine Precision@3
261
+ - type: cosine_precision@5
262
+ value: 0.11546391752577319
263
+ name: Cosine Precision@5
264
+ - type: cosine_precision@10
265
+ value: 0.06804123711340206
266
+ name: Cosine Precision@10
267
+ - type: cosine_recall@1
268
+ value: 0.32989690721649484
269
+ name: Cosine Recall@1
270
+ - type: cosine_recall@3
271
+ value: 0.4948453608247423
272
+ name: Cosine Recall@3
273
+ - type: cosine_recall@5
274
+ value: 0.5773195876288659
275
+ name: Cosine Recall@5
276
+ - type: cosine_recall@10
277
+ value: 0.6804123711340206
278
+ name: Cosine Recall@10
279
+ - type: cosine_ndcg@10
280
+ value: 0.4929368061598079
281
+ name: Cosine Ndcg@10
282
+ - type: cosine_mrr@10
283
+ value: 0.43412698412698414
284
+ name: Cosine Mrr@10
285
+ - type: cosine_map@100
286
+ value: 0.44657071536051934
287
+ name: Cosine Map@100
288
+ - task:
289
+ type: information-retrieval
290
+ name: Information Retrieval
291
+ dataset:
292
+ name: dim 128
293
+ type: dim_128
294
+ metrics:
295
+ - type: cosine_accuracy@1
296
+ value: 0.3402061855670103
297
+ name: Cosine Accuracy@1
298
+ - type: cosine_accuracy@3
299
+ value: 0.5051546391752577
300
+ name: Cosine Accuracy@3
301
+ - type: cosine_accuracy@5
302
+ value: 0.5670103092783505
303
+ name: Cosine Accuracy@5
304
+ - type: cosine_accuracy@10
305
+ value: 0.6907216494845361
306
+ name: Cosine Accuracy@10
307
+ - type: cosine_precision@1
308
+ value: 0.3402061855670103
309
+ name: Cosine Precision@1
310
+ - type: cosine_precision@3
311
+ value: 0.1683848797250859
312
+ name: Cosine Precision@3
313
+ - type: cosine_precision@5
314
+ value: 0.1134020618556701
315
+ name: Cosine Precision@5
316
+ - type: cosine_precision@10
317
+ value: 0.0690721649484536
318
+ name: Cosine Precision@10
319
+ - type: cosine_recall@1
320
+ value: 0.3402061855670103
321
+ name: Cosine Recall@1
322
+ - type: cosine_recall@3
323
+ value: 0.5051546391752577
324
+ name: Cosine Recall@3
325
+ - type: cosine_recall@5
326
+ value: 0.5670103092783505
327
+ name: Cosine Recall@5
328
+ - type: cosine_recall@10
329
+ value: 0.6907216494845361
330
+ name: Cosine Recall@10
331
+ - type: cosine_ndcg@10
332
+ value: 0.5032662355781912
333
+ name: Cosine Ndcg@10
334
+ - type: cosine_mrr@10
335
+ value: 0.4449517263950254
336
+ name: Cosine Mrr@10
337
+ - type: cosine_map@100
338
+ value: 0.4553038204145196
339
+ name: Cosine Map@100
340
+ - task:
341
+ type: information-retrieval
342
+ name: Information Retrieval
343
+ dataset:
344
+ name: dim 64
345
+ type: dim_64
346
+ metrics:
347
+ - type: cosine_accuracy@1
348
+ value: 0.32989690721649484
349
+ name: Cosine Accuracy@1
350
+ - type: cosine_accuracy@3
351
+ value: 0.4948453608247423
352
+ name: Cosine Accuracy@3
353
+ - type: cosine_accuracy@5
354
+ value: 0.5567010309278351
355
+ name: Cosine Accuracy@5
356
+ - type: cosine_accuracy@10
357
+ value: 0.6597938144329897
358
+ name: Cosine Accuracy@10
359
+ - type: cosine_precision@1
360
+ value: 0.32989690721649484
361
+ name: Cosine Precision@1
362
+ - type: cosine_precision@3
363
+ value: 0.1649484536082474
364
+ name: Cosine Precision@3
365
+ - type: cosine_precision@5
366
+ value: 0.11134020618556702
367
+ name: Cosine Precision@5
368
+ - type: cosine_precision@10
369
+ value: 0.06597938144329896
370
+ name: Cosine Precision@10
371
+ - type: cosine_recall@1
372
+ value: 0.32989690721649484
373
+ name: Cosine Recall@1
374
+ - type: cosine_recall@3
375
+ value: 0.4948453608247423
376
+ name: Cosine Recall@3
377
+ - type: cosine_recall@5
378
+ value: 0.5567010309278351
379
+ name: Cosine Recall@5
380
+ - type: cosine_recall@10
381
+ value: 0.6597938144329897
382
+ name: Cosine Recall@10
383
+ - type: cosine_ndcg@10
384
+ value: 0.481245330711533
385
+ name: Cosine Ndcg@10
386
+ - type: cosine_mrr@10
387
+ value: 0.42577319587628865
388
+ name: Cosine Mrr@10
389
+ - type: cosine_map@100
390
+ value: 0.43965778950983864
391
+ name: Cosine Map@100
392
+ ---
393
+
394
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
395
+
396
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
397
+
398
+ ## Model Details
399
+
400
+ ### Model Description
401
+ - **Model Type:** Sentence Transformer
402
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
403
+ - **Maximum Sequence Length:** 512 tokens
404
+ - **Output Dimensionality:** 768 tokens
405
+ - **Similarity Function:** Cosine Similarity
406
+ <!-- - **Training Dataset:** Unknown -->
407
+ - **Language:** en
408
+ - **License:** apache-2.0
409
+
410
+ ### Model Sources
411
+
412
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
413
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
414
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
415
+
416
+ ### Full Model Architecture
417
+
418
+ ```
419
+ SentenceTransformer(
420
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
421
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
422
+ (2): Normalize()
423
+ )
424
+ ```
425
+
426
+ ## Usage
427
+
428
+ ### Direct Usage (Sentence Transformers)
429
+
430
+ First install the Sentence Transformers library:
431
+
432
+ ```bash
433
+ pip install -U sentence-transformers
434
+ ```
435
+
436
+ Then you can load this model and run inference.
437
+ ```python
438
+ from sentence_transformers import SentenceTransformer
439
+
440
+ # Download from the 🤗 Hub
441
+ model = SentenceTransformer("MugheesAwan11/bge-base-securiti-dataset-1-v12")
442
+ # Run inference
443
+ sentences = [
444
+ "View Salesforce View Workday View GCP View Azure View Oracle View Learn more Regulations Automate compliance with global privacy regulations. US California CCPA View US California CPRA View European Union GDPR View Thailand’s PDPA View China PIPL View Canada PIPEDA View Brazil's LGPD View \\+ More View Learn more Roles Identify data risk and enable protection & control. Privacy View Security View Governance View Marketing View Resources Blog Read through our articles written by industry experts Collateral Product broch",
445
+ 'What resources are available for learning more about GCP?',
446
+ "What are the key provisions of South Korea's data privacy law?",
447
+ ]
448
+ embeddings = model.encode(sentences)
449
+ print(embeddings.shape)
450
+ # [3, 768]
451
+
452
+ # Get the similarity scores for the embeddings
453
+ similarities = model.similarity(embeddings, embeddings)
454
+ print(similarities.shape)
455
+ # [3, 3]
456
+ ```
457
+
458
+ <!--
459
+ ### Direct Usage (Transformers)
460
+
461
+ <details><summary>Click to see the direct usage in Transformers</summary>
462
+
463
+ </details>
464
+ -->
465
+
466
+ <!--
467
+ ### Downstream Usage (Sentence Transformers)
468
+
469
+ You can finetune this model on your own dataset.
470
+
471
+ <details><summary>Click to expand</summary>
472
+
473
+ </details>
474
+ -->
475
+
476
+ <!--
477
+ ### Out-of-Scope Use
478
+
479
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
480
+ -->
481
+
482
+ ## Evaluation
483
+
484
+ ### Metrics
485
+
486
+ #### Information Retrieval
487
+ * Dataset: `dim_768`
488
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
489
+
490
+ | Metric | Value |
491
+ |:--------------------|:-----------|
492
+ | cosine_accuracy@1 | 0.3608 |
493
+ | cosine_accuracy@3 | 0.5464 |
494
+ | cosine_accuracy@5 | 0.5773 |
495
+ | cosine_accuracy@10 | 0.6907 |
496
+ | cosine_precision@1 | 0.3608 |
497
+ | cosine_precision@3 | 0.1821 |
498
+ | cosine_precision@5 | 0.1155 |
499
+ | cosine_precision@10 | 0.0691 |
500
+ | cosine_recall@1 | 0.3608 |
501
+ | cosine_recall@3 | 0.5464 |
502
+ | cosine_recall@5 | 0.5773 |
503
+ | cosine_recall@10 | 0.6907 |
504
+ | cosine_ndcg@10 | 0.518 |
505
+ | cosine_mrr@10 | 0.4639 |
506
+ | **cosine_map@100** | **0.4768** |
507
+
508
+ #### Information Retrieval
509
+ * Dataset: `dim_512`
510
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
511
+
512
+ | Metric | Value |
513
+ |:--------------------|:-----------|
514
+ | cosine_accuracy@1 | 0.3608 |
515
+ | cosine_accuracy@3 | 0.5361 |
516
+ | cosine_accuracy@5 | 0.5773 |
517
+ | cosine_accuracy@10 | 0.701 |
518
+ | cosine_precision@1 | 0.3608 |
519
+ | cosine_precision@3 | 0.1787 |
520
+ | cosine_precision@5 | 0.1155 |
521
+ | cosine_precision@10 | 0.0701 |
522
+ | cosine_recall@1 | 0.3608 |
523
+ | cosine_recall@3 | 0.5361 |
524
+ | cosine_recall@5 | 0.5773 |
525
+ | cosine_recall@10 | 0.701 |
526
+ | cosine_ndcg@10 | 0.5187 |
527
+ | cosine_mrr@10 | 0.4621 |
528
+ | **cosine_map@100** | **0.4738** |
529
+
530
+ #### Information Retrieval
531
+ * Dataset: `dim_256`
532
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
533
+
534
+ | Metric | Value |
535
+ |:--------------------|:-----------|
536
+ | cosine_accuracy@1 | 0.3299 |
537
+ | cosine_accuracy@3 | 0.4948 |
538
+ | cosine_accuracy@5 | 0.5773 |
539
+ | cosine_accuracy@10 | 0.6804 |
540
+ | cosine_precision@1 | 0.3299 |
541
+ | cosine_precision@3 | 0.1649 |
542
+ | cosine_precision@5 | 0.1155 |
543
+ | cosine_precision@10 | 0.068 |
544
+ | cosine_recall@1 | 0.3299 |
545
+ | cosine_recall@3 | 0.4948 |
546
+ | cosine_recall@5 | 0.5773 |
547
+ | cosine_recall@10 | 0.6804 |
548
+ | cosine_ndcg@10 | 0.4929 |
549
+ | cosine_mrr@10 | 0.4341 |
550
+ | **cosine_map@100** | **0.4466** |
551
+
552
+ #### Information Retrieval
553
+ * Dataset: `dim_128`
554
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
555
+
556
+ | Metric | Value |
557
+ |:--------------------|:-----------|
558
+ | cosine_accuracy@1 | 0.3402 |
559
+ | cosine_accuracy@3 | 0.5052 |
560
+ | cosine_accuracy@5 | 0.567 |
561
+ | cosine_accuracy@10 | 0.6907 |
562
+ | cosine_precision@1 | 0.3402 |
563
+ | cosine_precision@3 | 0.1684 |
564
+ | cosine_precision@5 | 0.1134 |
565
+ | cosine_precision@10 | 0.0691 |
566
+ | cosine_recall@1 | 0.3402 |
567
+ | cosine_recall@3 | 0.5052 |
568
+ | cosine_recall@5 | 0.567 |
569
+ | cosine_recall@10 | 0.6907 |
570
+ | cosine_ndcg@10 | 0.5033 |
571
+ | cosine_mrr@10 | 0.445 |
572
+ | **cosine_map@100** | **0.4553** |
573
+
574
+ #### Information Retrieval
575
+ * Dataset: `dim_64`
576
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
577
+
578
+ | Metric | Value |
579
+ |:--------------------|:-----------|
580
+ | cosine_accuracy@1 | 0.3299 |
581
+ | cosine_accuracy@3 | 0.4948 |
582
+ | cosine_accuracy@5 | 0.5567 |
583
+ | cosine_accuracy@10 | 0.6598 |
584
+ | cosine_precision@1 | 0.3299 |
585
+ | cosine_precision@3 | 0.1649 |
586
+ | cosine_precision@5 | 0.1113 |
587
+ | cosine_precision@10 | 0.066 |
588
+ | cosine_recall@1 | 0.3299 |
589
+ | cosine_recall@3 | 0.4948 |
590
+ | cosine_recall@5 | 0.5567 |
591
+ | cosine_recall@10 | 0.6598 |
592
+ | cosine_ndcg@10 | 0.4812 |
593
+ | cosine_mrr@10 | 0.4258 |
594
+ | **cosine_map@100** | **0.4397** |
595
+
596
+ <!--
597
+ ## Bias, Risks and Limitations
598
+
599
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
600
+ -->
601
+
602
+ <!--
603
+ ### Recommendations
604
+
605
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
606
+ -->
607
+
608
+ ## Training Details
609
+
610
+ ### Training Dataset
611
+
612
+ #### Unnamed Dataset
613
+
614
+
615
+ * Size: 872 training samples
616
+ * Columns: <code>positive</code> and <code>anchor</code>
617
+ * Approximate statistics based on the first 1000 samples:
618
+ | | positive | anchor |
619
+ |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
620
+ | type | string | string |
621
+ | details | <ul><li>min: 89 tokens</li><li>mean: 229.38 tokens</li><li>max: 414 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 21.92 tokens</li><li>max: 102 tokens</li></ul> |
622
+ * Samples:
623
+ | positive | anchor |
624
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------|
625
+ | <code>controller should inform the data subject in every situation where his or her personal data is processed. The LPPD provides a general requirement to provide information on the collection methods but does not explicitly refer to automated decision-making or profiling. vs Articles: 5 14, Recitals: 58 63 This right requires the controller to provide the following information to the data subject when requested. This should be given in a concise, transparent, intelligible, and easily accessible form, using plain language: The identity and contact details of the controller, controller’s representative, and DPO, where applicable The purpose and the legal basis of the processing The categories of personal data concerned The recipients of the personal data The appropriate or suitable safeguards and the means to obtain a copy of them or where they have been made available The controller must provide information necessary to ensure fair and transparent processing whether or not the personal</code> | <code>What information must the controller provide regarding their identity and contact details?</code> |
626
+ | <code>and deletions, and manage all vendor contracts and compliance documents. ## Key Rights Under Ghana’s Data Protection Act 2012 **Right to be Informed** : Data subjects have the right to be informed of the processing of their personal data and the purposes for which the data is processed. **Right to Access:** Data subjects have the right to obtain confirmation whether or not the controller holds personal data about them, access their personal data, and obtain descriptions of data recipients. **Right to Rectification** : Under the right to rectification, data subjects can request the correction of their data. **Right to Erasure:** Data subjects have the right to request the erasure and destruction of the data that is no longer needed by the organization. **Right to Object:** The data subject has the right to prevent the data controller from processing personal data if such processing causes or is likely to cause unwarranted damage or distress to the data</code> | <code>What are the key rights provided to data subjects under Ghana's Data Protection Act 2012?</code> |
627
+ | <code>aim to protect personal data, they have differences in scope, requirements, and applicability. PDPA applies to Thailand, while GDPR applies to the European Union. The effect of PDPA in Thailand is to regulate how personal data is processed, collected, used, and protected by individuals and organizations in the country. Thailand's PDPA includes provisions related to personal data breach notifications, requiring data controllers to notify the Personal Data Protection Committee (PDPC) of a personal data breach as soon as possible, preferably within 72 hours of becoming aware of it. The principles of PDPA in Thailand include obtaining consent, especially for minors, ensuring data security, issuing timely data breach notifications, designating a data protection officer, conducting data protection impact assessments, maintaining a record of processing activities, and ensuring adequate standards when transferring data across borders. ## Join Our Newsletter Get all the latest information, law updates and more delivered to your inbox ### Share</code> | <code>What is the role of obtaining consent in Thailand's PDPA?</code> |
628
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
629
+ ```json
630
+ {
631
+ "loss": "MultipleNegativesRankingLoss",
632
+ "matryoshka_dims": [
633
+ 768,
634
+ 512,
635
+ 256,
636
+ 128,
637
+ 64
638
+ ],
639
+ "matryoshka_weights": [
640
+ 1,
641
+ 1,
642
+ 1,
643
+ 1,
644
+ 1
645
+ ],
646
+ "n_dims_per_step": -1
647
+ }
648
+ ```
649
+
650
+ ### Training Hyperparameters
651
+ #### Non-Default Hyperparameters
652
+
653
+ - `eval_strategy`: epoch
654
+ - `per_device_train_batch_size`: 32
655
+ - `per_device_eval_batch_size`: 16
656
+ - `learning_rate`: 2e-05
657
+ - `num_train_epochs`: 10
658
+ - `lr_scheduler_type`: cosine
659
+ - `warmup_ratio`: 0.1
660
+ - `bf16`: True
661
+ - `tf32`: True
662
+ - `load_best_model_at_end`: True
663
+ - `optim`: adamw_torch_fused
664
+ - `batch_sampler`: no_duplicates
665
+
666
+ #### All Hyperparameters
667
+ <details><summary>Click to expand</summary>
668
+
669
+ - `overwrite_output_dir`: False
670
+ - `do_predict`: False
671
+ - `eval_strategy`: epoch
672
+ - `prediction_loss_only`: True
673
+ - `per_device_train_batch_size`: 32
674
+ - `per_device_eval_batch_size`: 16
675
+ - `per_gpu_train_batch_size`: None
676
+ - `per_gpu_eval_batch_size`: None
677
+ - `gradient_accumulation_steps`: 1
678
+ - `eval_accumulation_steps`: None
679
+ - `learning_rate`: 2e-05
680
+ - `weight_decay`: 0.0
681
+ - `adam_beta1`: 0.9
682
+ - `adam_beta2`: 0.999
683
+ - `adam_epsilon`: 1e-08
684
+ - `max_grad_norm`: 1.0
685
+ - `num_train_epochs`: 10
686
+ - `max_steps`: -1
687
+ - `lr_scheduler_type`: cosine
688
+ - `lr_scheduler_kwargs`: {}
689
+ - `warmup_ratio`: 0.1
690
+ - `warmup_steps`: 0
691
+ - `log_level`: passive
692
+ - `log_level_replica`: warning
693
+ - `log_on_each_node`: True
694
+ - `logging_nan_inf_filter`: True
695
+ - `save_safetensors`: True
696
+ - `save_on_each_node`: False
697
+ - `save_only_model`: False
698
+ - `restore_callback_states_from_checkpoint`: False
699
+ - `no_cuda`: False
700
+ - `use_cpu`: False
701
+ - `use_mps_device`: False
702
+ - `seed`: 42
703
+ - `data_seed`: None
704
+ - `jit_mode_eval`: False
705
+ - `use_ipex`: False
706
+ - `bf16`: True
707
+ - `fp16`: False
708
+ - `fp16_opt_level`: O1
709
+ - `half_precision_backend`: auto
710
+ - `bf16_full_eval`: False
711
+ - `fp16_full_eval`: False
712
+ - `tf32`: True
713
+ - `local_rank`: 0
714
+ - `ddp_backend`: None
715
+ - `tpu_num_cores`: None
716
+ - `tpu_metrics_debug`: False
717
+ - `debug`: []
718
+ - `dataloader_drop_last`: False
719
+ - `dataloader_num_workers`: 0
720
+ - `dataloader_prefetch_factor`: None
721
+ - `past_index`: -1
722
+ - `disable_tqdm`: False
723
+ - `remove_unused_columns`: True
724
+ - `label_names`: None
725
+ - `load_best_model_at_end`: True
726
+ - `ignore_data_skip`: False
727
+ - `fsdp`: []
728
+ - `fsdp_min_num_params`: 0
729
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
730
+ - `fsdp_transformer_layer_cls_to_wrap`: None
731
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
732
+ - `deepspeed`: None
733
+ - `label_smoothing_factor`: 0.0
734
+ - `optim`: adamw_torch_fused
735
+ - `optim_args`: None
736
+ - `adafactor`: False
737
+ - `group_by_length`: False
738
+ - `length_column_name`: length
739
+ - `ddp_find_unused_parameters`: None
740
+ - `ddp_bucket_cap_mb`: None
741
+ - `ddp_broadcast_buffers`: False
742
+ - `dataloader_pin_memory`: True
743
+ - `dataloader_persistent_workers`: False
744
+ - `skip_memory_metrics`: True
745
+ - `use_legacy_prediction_loop`: False
746
+ - `push_to_hub`: False
747
+ - `resume_from_checkpoint`: None
748
+ - `hub_model_id`: None
749
+ - `hub_strategy`: every_save
750
+ - `hub_private_repo`: False
751
+ - `hub_always_push`: False
752
+ - `gradient_checkpointing`: False
753
+ - `gradient_checkpointing_kwargs`: None
754
+ - `include_inputs_for_metrics`: False
755
+ - `eval_do_concat_batches`: True
756
+ - `fp16_backend`: auto
757
+ - `push_to_hub_model_id`: None
758
+ - `push_to_hub_organization`: None
759
+ - `mp_parameters`:
760
+ - `auto_find_batch_size`: False
761
+ - `full_determinism`: False
762
+ - `torchdynamo`: None
763
+ - `ray_scope`: last
764
+ - `ddp_timeout`: 1800
765
+ - `torch_compile`: False
766
+ - `torch_compile_backend`: None
767
+ - `torch_compile_mode`: None
768
+ - `dispatch_batches`: None
769
+ - `split_batches`: None
770
+ - `include_tokens_per_second`: False
771
+ - `include_num_input_tokens_seen`: False
772
+ - `neftune_noise_alpha`: None
773
+ - `optim_target_modules`: None
774
+ - `batch_eval_metrics`: False
775
+ - `batch_sampler`: no_duplicates
776
+ - `multi_dataset_batch_sampler`: proportional
777
+
778
+ </details>
779
+
780
+ ### Training Logs
781
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
782
+ |:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
783
+ | 0.3571 | 10 | 6.8967 | - | - | - | - | - |
784
+ | 0.7143 | 20 | 6.1128 | - | - | - | - | - |
785
+ | 1.0 | 28 | - | 0.4344 | 0.4387 | 0.4857 | 0.3831 | 0.4515 |
786
+ | 1.0714 | 30 | 4.4294 | - | - | - | - | - |
787
+ | 1.4286 | 40 | 3.2369 | - | - | - | - | - |
788
+ | 1.7857 | 50 | 3.2624 | - | - | - | - | - |
789
+ | 2.0 | 56 | - | 0.4345 | 0.4456 | 0.4752 | 0.3885 | 0.4672 |
790
+ | 2.1429 | 60 | 2.1973 | - | - | - | - | - |
791
+ | 2.5 | 70 | 1.815 | - | - | - | - | - |
792
+ | 2.8571 | 80 | 1.8725 | - | - | - | - | - |
793
+ | **3.0** | **84** | **-** | **0.4636** | **0.4469** | **0.4781** | **0.4012** | **0.4765** |
794
+ | 3.2143 | 90 | 1.2027 | - | - | - | - | - |
795
+ | 3.5714 | 100 | 1.3053 | - | - | - | - | - |
796
+ | 3.9286 | 110 | 1.1 | - | - | - | - | - |
797
+ | 4.0 | 112 | - | 0.4417 | 0.4282 | 0.4721 | 0.4154 | 0.4671 |
798
+ | 4.2857 | 120 | 0.8088 | - | - | - | - | - |
799
+ | 4.6429 | 130 | 0.8744 | - | - | - | - | - |
800
+ | 5.0 | 140 | 0.8075 | 0.4435 | 0.4443 | 0.4725 | 0.4116 | 0.4720 |
801
+ | 5.3571 | 150 | 0.5131 | - | - | - | - | - |
802
+ | 5.7143 | 160 | 0.6387 | - | - | - | - | - |
803
+ | 6.0 | 168 | - | 0.4495 | 0.4375 | 0.4768 | 0.4363 | 0.4794 |
804
+ | 6.0714 | 170 | 0.5041 | - | - | - | - | - |
805
+ | 6.4286 | 180 | 0.4053 | - | - | - | - | - |
806
+ | 6.7857 | 190 | 0.5665 | - | - | - | - | - |
807
+ | 7.0 | 196 | - | 0.4549 | 0.4504 | 0.4721 | 0.4382 | 0.4792 |
808
+ | 7.1429 | 200 | 0.3854 | - | - | - | - | - |
809
+ | 7.5 | 210 | 0.3085 | - | - | - | - | - |
810
+ | 7.8571 | 220 | 0.461 | - | - | - | - | - |
811
+ | 8.0 | 224 | - | 0.4570 | 0.4465 | 0.4722 | 0.4399 | 0.4785 |
812
+ | 8.2143 | 230 | 0.2521 | - | - | - | - | - |
813
+ | 8.5714 | 240 | 0.3944 | - | - | - | - | - |
814
+ | 8.9286 | 250 | 0.3524 | - | - | - | - | - |
815
+ | 9.0 | 252 | - | 0.4533 | 0.4457 | 0.4736 | 0.4394 | 0.4764 |
816
+ | 9.2857 | 260 | 0.2825 | - | - | - | - | - |
817
+ | 9.6429 | 270 | 0.3919 | - | - | - | - | - |
818
+ | 10.0 | 280 | 0.4004 | 0.4553 | 0.4466 | 0.4738 | 0.4397 | 0.4768 |
819
+
820
+ * The bold row denotes the saved checkpoint.
821
+
822
+ ### Framework Versions
823
+ - Python: 3.10.14
824
+ - Sentence Transformers: 3.0.1
825
+ - Transformers: 4.41.2
826
+ - PyTorch: 2.1.2+cu121
827
+ - Accelerate: 0.31.0
828
+ - Datasets: 2.19.1
829
+ - Tokenizers: 0.19.1
830
+
831
+ ## Citation
832
+
833
+ ### BibTeX
834
+
835
+ #### Sentence Transformers
836
+ ```bibtex
837
+ @inproceedings{reimers-2019-sentence-bert,
838
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
839
+ author = "Reimers, Nils and Gurevych, Iryna",
840
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
841
+ month = "11",
842
+ year = "2019",
843
+ publisher = "Association for Computational Linguistics",
844
+ url = "https://arxiv.org/abs/1908.10084",
845
+ }
846
+ ```
847
+
848
+ #### MatryoshkaLoss
849
+ ```bibtex
850
+ @misc{kusupati2024matryoshka,
851
+ title={Matryoshka Representation Learning},
852
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
853
+ year={2024},
854
+ eprint={2205.13147},
855
+ archivePrefix={arXiv},
856
+ primaryClass={cs.LG}
857
+ }
858
+ ```
859
+
860
+ #### MultipleNegativesRankingLoss
861
+ ```bibtex
862
+ @misc{henderson2017efficient,
863
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
864
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
865
+ year={2017},
866
+ eprint={1705.00652},
867
+ archivePrefix={arXiv},
868
+ primaryClass={cs.CL}
869
+ }
870
+ ```
871
+
872
+ <!--
873
+ ## Glossary
874
+
875
+ *Clearly define terms in order to be accessible across audiences.*
876
+ -->
877
+
878
+ <!--
879
+ ## Model Card Authors
880
+
881
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
882
+ -->
883
+
884
+ <!--
885
+ ## Model Card Contact
886
+
887
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
888
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25d8fefaf8c163f31fe4cc41bf2b63b43a34ee060dfe1a099a912514e4549448
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff