trained_bart / README.md
Mohitvvermaa's picture
End of training
92822ad verified
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: trained_bart
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 13.697171069534688
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mohitvvermaa/huggingface/runs/lbaxj4mg)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mohitvvermaa/huggingface/runs/lbaxj4mg)
# trained_bart
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0910
- Rouge1: 13.6972
- Rouge2: 2.0482
- Rougel: 11.3161
- Rougelsum: 12.9271
- Gen Len: 56.5854
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 0.0923 | 1.0 | 737 | 0.0888 | 13.2333 | 1.4874 | 9.9559 | 11.9429 | 62.5854 |
| 0.086 | 2.0 | 1474 | 0.0886 | 13.0092 | 2.0724 | 10.5364 | 11.7522 | 60.1463 |
| 0.0744 | 3.0 | 2211 | 0.0910 | 13.6972 | 2.0482 | 11.3161 | 12.9271 | 56.5854 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1