|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- samsum |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: trained_bart |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: samsum |
|
type: samsum |
|
config: samsum |
|
split: validation |
|
args: samsum |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 13.697171069534688 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mohitvvermaa/huggingface/runs/lbaxj4mg) |
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mohitvvermaa/huggingface/runs/lbaxj4mg) |
|
# trained_bart |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the samsum dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0910 |
|
- Rouge1: 13.6972 |
|
- Rouge2: 2.0482 |
|
- Rougel: 11.3161 |
|
- Rougelsum: 12.9271 |
|
- Gen Len: 56.5854 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| |
|
| 0.0923 | 1.0 | 737 | 0.0888 | 13.2333 | 1.4874 | 9.9559 | 11.9429 | 62.5854 | |
|
| 0.086 | 2.0 | 1474 | 0.0886 | 13.0092 | 2.0724 | 10.5364 | 11.7522 | 60.1463 | |
|
| 0.0744 | 3.0 | 2211 | 0.0910 | 13.6972 | 2.0482 | 11.3161 | 12.9271 | 56.5854 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|