metadata
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: trained_bart
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: validation
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 13.697171069534688
trained_bart
This model is a fine-tuned version of facebook/bart-large-cnn on the samsum dataset. It achieves the following results on the evaluation set:
- Loss: 0.0910
- Rouge1: 13.6972
- Rouge2: 2.0482
- Rougel: 11.3161
- Rougelsum: 12.9271
- Gen Len: 56.5854
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.0923 | 1.0 | 737 | 0.0888 | 13.2333 | 1.4874 | 9.9559 | 11.9429 | 62.5854 |
0.086 | 2.0 | 1474 | 0.0886 | 13.0092 | 2.0724 | 10.5364 | 11.7522 | 60.1463 |
0.0744 | 3.0 | 2211 | 0.0910 | 13.6972 | 2.0482 | 11.3161 | 12.9271 | 56.5854 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1