MaziyarPanahi's picture
adding EXL2 reference (#15)
a7389ff verified
|
raw
history blame
5.69 kB
metadata
language:
  - en
license: other
library_name: transformers
tags:
  - chat
  - qwen
  - qwen2.5
  - finetune
  - english
base_model: MaziyarPanahi/calme-3-selfmerge-qwen2-78b
model_name: calme-3.2-instruct-78b
license_name: qwen
license_link: https://huggingface.co./Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
  - name: calme-3.2-instruct-78b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 80.63
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 62.61
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 39.95
            name: exact match
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 20.36
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 38.53
            name: acc_norm
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 70.03
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
          name: Open LLM Leaderboard
Calme-3 Models

This is an experimental model, so it might not perform well for some prompts and may be sensitive to hyper parameters. I would appreciate any feedback to see if I can fix any issues in the next iteration. ❤️

MaziyarPanahi/calme-3.2-instruct-78b

This model is an advanced iteration of the powerful Qwen/Qwen2.5-72B, specifically fine-tuned to enhance its capabilities in generic domains. The Qwen2.5-72B base model was merged with itself to create a larger model. After that, the model was fine-tuned on a custom datasets.

⚡ Quantized GGUF

Here are the GGUF models thanks to bartowski: calme-3.2-instruct-78b-GGUF

⚡ Quantized EXL2

Here is the EXL2 4.5 bits per weight (bpw) model thanks to DavidCatalano: DavidCatalano/calme-3.2-instruct-78b-exl2

DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw.

🏆 Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 52.02
IFEval (0-Shot) 80.63
BBH (3-Shot) 62.61
MATH Lvl 5 (4-Shot) 39.95
GPQA (0-shot) 20.36
MuSR (0-shot) 38.53
MMLU-PRO (5-shot) 70.03

Prompt Template

This model uses ChatML prompt template:

<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}

How to use


# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.2-instruct-78b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.2-instruct-78b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.2-instruct-78b")

Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.