File size: 5,685 Bytes
10409cc
 
 
614b091
 
10409cc
 
 
 
 
 
614b091
 
 
 
 
10409cc
 
 
614b091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10409cc
 
 
 
 
 
 
 
 
 
 
 
 
a7389ff
 
 
 
 
 
 
 
10409cc
44442f7
 
10409cc
44442f7
 
 
 
 
 
 
 
 
10409cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
- en
license: other
library_name: transformers
tags:
- chat
- qwen
- qwen2.5
- finetune
- english
base_model: MaziyarPanahi/calme-3-selfmerge-qwen2-78b
model_name: calme-3.2-instruct-78b
license_name: qwen
license_link: https://huggingface.co./Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
model-index:
- name: calme-3.2-instruct-78b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.63
      name: strict accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 62.61
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 39.95
      name: exact match
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 20.36
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 38.53
      name: acc_norm
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 70.03
      name: accuracy
    source:
      url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=MaziyarPanahi/calme-3.2-instruct-78b
      name: Open LLM Leaderboard
---

<img src="./calme_3.png" alt="Calme-3 Models" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

> [!TIP]
> This is an experimental model, so it might not perform well for some prompts and may be sensitive to hyper parameters. I would appreciate any feedback to see if I can fix any issues in the next iteration. ❤️

# MaziyarPanahi/calme-3.2-instruct-78b

This model is an advanced iteration of the powerful `Qwen/Qwen2.5-72B`, specifically fine-tuned to enhance its capabilities in generic domains. The `Qwen2.5-72B` base model was merged with itself to create a larger model. After that, the model was fine-tuned on a custom datasets.

# ⚡ Quantized GGUF

Here are the GGUF models thanks to [bartowski](https://huggingface.co./bartowski): [calme-3.2-instruct-78b-GGUF](https://huggingface.co./bartowski/calme-3.2-instruct-78b-GGUF)

# ⚡ Quantized EXL2

Here is the EXL2 4.5 bits per weight (bpw) model thanks to [DavidCatalano](https://huggingface.co./DavidCatalano): [DavidCatalano/calme-3.2-instruct-78b-exl2](https://huggingface.co./DavidCatalano/calme-3.2-instruct-78b-exl2)

DavidCatalano/calme-3.2-instruct-78b-exl2-4.5bpw.


# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_MaziyarPanahi__calme-3.2-instruct-78b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |52.02|
|IFEval (0-Shot)    |80.63|
|BBH (3-Shot)       |62.61|
|MATH Lvl 5 (4-Shot)|39.95|
|GPQA (0-shot)      |20.36|
|MuSR (0-shot)      |38.53|
|MMLU-PRO (5-shot)  |70.03|

# Prompt Template

This model uses `ChatML` prompt template:

```sh
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
````

# How to use

```python

# Use a pipeline as a high-level helper

from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="MaziyarPanahi/calme-3.2-instruct-78b")
pipe(messages)


# Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("MaziyarPanahi/calme-3.2-instruct-78b")
model = AutoModelForCausalLM.from_pretrained("MaziyarPanahi/calme-3.2-instruct-78b")
```

# Ethical Considerations

As with any large language model, users should be aware of potential biases and limitations. We recommend implementing appropriate safeguards and human oversight when deploying this model in production environments.