|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: MUmairAB/bert-based-MaskedLM |
|
results: [] |
|
datasets: |
|
- imdb |
|
pipeline_tag: fill-mask |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# MUmairAB/bert-based-MaskedLM |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on [IMDB Movies Review](https://huggingface.co./datasets/imdb) dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 2.4360 |
|
- Validation Loss: 2.3284 |
|
- Epoch: 20 |
|
|
|
## Model description |
|
|
|
[DistilBERT-base-uncased](https://huggingface.co./distilbert-base-uncased) |
|
``` |
|
Model: "tf_distil_bert_for_masked_lm" |
|
_________________________________________________________________ |
|
Layer (type) Output Shape Param # |
|
================================================================= |
|
distilbert (TFDistilBertMai multiple 66362880 |
|
nLayer) |
|
|
|
vocab_transform (Dense) multiple 590592 |
|
|
|
vocab_layer_norm (LayerNorm multiple 1536 |
|
alization) |
|
|
|
vocab_projector (TFDistilBe multiple 23866170 |
|
rtLMHead) |
|
|
|
================================================================= |
|
Total params: 66,985,530 |
|
Trainable params: 66,985,530 |
|
Non-trainable params: 0 |
|
_________________________________________________________________ |
|
``` |
|
|
|
## Intended uses & limitations |
|
|
|
The model was trained on IMDB movies review dataset. So, it inherits the language biases from the dataset. |
|
|
|
## Training and evaluation data |
|
|
|
The model was trained on [IMDB Movies Review](https://huggingface.co./datasets/imdb) dataset. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Epoch | |
|
|:----------:|:---------------:|:-----:| |
|
| 3.0754 | 2.7548 | 0 | |
|
| 2.7969 | 2.6209 | 1 | |
|
| 2.7214 | 2.5588 | 2 | |
|
| 2.6626 | 2.5554 | 3 | |
|
| 2.6466 | 2.4881 | 4 | |
|
| 2.6238 | 2.4775 | 5 | |
|
| 2.5696 | 2.4280 | 6 | |
|
| 2.5504 | 2.3924 | 7 | |
|
| 2.5171 | 2.3725 | 8 | |
|
| 2.5180 | 2.3142 | 9 | |
|
| 2.4443 | 2.2974 | 10 | |
|
| 2.4497 | 2.3317 | 11 | |
|
| 2.4371 | 2.3317 | 12 | |
|
| 2.4377 | 2.3237 | 13 | |
|
| 2.4369 | 2.3338 | 14 | |
|
| 2.4350 | 2.3021 | 15 | |
|
| 2.4267 | 2.3264 | 16 | |
|
| 2.4557 | 2.3280 | 17 | |
|
| 2.4461 | 2.3165 | 18 | |
|
| 2.4360 | 2.3284 | 19 | |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- TensorFlow 2.12.0 |
|
- Tokenizers 0.13.3 |