--- license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: MUmairAB/bert-based-MaskedLM results: [] datasets: - imdb pipeline_tag: fill-mask --- # MUmairAB/bert-based-MaskedLM This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on [IMDB Movies Review](https://huggingface.co./datasets/imdb) dataset. It achieves the following results on the evaluation set: - Train Loss: 2.4360 - Validation Loss: 2.3284 - Epoch: 20 ## Model description [DistilBERT-base-uncased](https://huggingface.co./distilbert-base-uncased) ``` Model: "tf_distil_bert_for_masked_lm" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= distilbert (TFDistilBertMai multiple 66362880 nLayer) vocab_transform (Dense) multiple 590592 vocab_layer_norm (LayerNorm multiple 1536 alization) vocab_projector (TFDistilBe multiple 23866170 rtLMHead) ================================================================= Total params: 66,985,530 Trainable params: 66,985,530 Non-trainable params: 0 _________________________________________________________________ ``` ## Intended uses & limitations The model was trained on IMDB movies review dataset. So, it inherits the language biases from the dataset. ## Training and evaluation data The model was trained on [IMDB Movies Review](https://huggingface.co./datasets/imdb) dataset. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': -60, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, '__passive_serialization__': True}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 3.0754 | 2.7548 | 0 | | 2.7969 | 2.6209 | 1 | | 2.7214 | 2.5588 | 2 | | 2.6626 | 2.5554 | 3 | | 2.6466 | 2.4881 | 4 | | 2.6238 | 2.4775 | 5 | | 2.5696 | 2.4280 | 6 | | 2.5504 | 2.3924 | 7 | | 2.5171 | 2.3725 | 8 | | 2.5180 | 2.3142 | 9 | | 2.4443 | 2.2974 | 10 | | 2.4497 | 2.3317 | 11 | | 2.4371 | 2.3317 | 12 | | 2.4377 | 2.3237 | 13 | | 2.4369 | 2.3338 | 14 | | 2.4350 | 2.3021 | 15 | | 2.4267 | 2.3264 | 16 | | 2.4557 | 2.3280 | 17 | | 2.4461 | 2.3165 | 18 | | 2.4360 | 2.3284 | 19 | ### Framework versions - Transformers 4.30.2 - TensorFlow 2.12.0 - Tokenizers 0.13.3