MSAMTB's picture
Training in progress, step 200
4893fb3 verified
|
raw
history blame
7.93 kB
metadata
license: mit
base_model: SCUT-DLVCLab/lilt-roberta-en-base
tags:
  - generated_from_trainer
model-index:
  - name: lilt-en-funsd-layoutlmv3
    results: []

lilt-en-funsd-layoutlmv3

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5778
  • Answer: {'precision': 0.8764705882352941, 'recall': 0.9118727050183598, 'f1': 0.8938212357528493, 'number': 817}
  • Header: {'precision': 0.6593406593406593, 'recall': 0.5042016806722689, 'f1': 0.5714285714285715, 'number': 119}
  • Question: {'precision': 0.8901890189018902, 'recall': 0.9182915506035283, 'f1': 0.9040219378427787, 'number': 1077}
  • Overall Precision: 0.8743
  • Overall Recall: 0.8912
  • Overall F1: 0.8827
  • Overall Accuracy: 0.8242

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4133 10.5263 200 1.0790 {'precision': 0.8122941822173436, 'recall': 0.9057527539779682, 'f1': 0.8564814814814816, 'number': 817} {'precision': 0.5463917525773195, 'recall': 0.44537815126050423, 'f1': 0.4907407407407407, 'number': 119} {'precision': 0.8778280542986425, 'recall': 0.9006499535747446, 'f1': 0.8890925756186985, 'number': 1077} 0.8344 0.8758 0.8546 0.7789
0.0495 21.0526 400 1.1160 {'precision': 0.8738207547169812, 'recall': 0.9069767441860465, 'f1': 0.8900900900900901, 'number': 817} {'precision': 0.6354166666666666, 'recall': 0.5126050420168067, 'f1': 0.5674418604651162, 'number': 119} {'precision': 0.8720829732065687, 'recall': 0.9368616527390901, 'f1': 0.9033124440465533, 'number': 1077} 0.8620 0.8997 0.8804 0.8217
0.0138 31.5789 600 1.3117 {'precision': 0.8450867052023121, 'recall': 0.8947368421052632, 'f1': 0.8692033293697978, 'number': 817} {'precision': 0.5348837209302325, 'recall': 0.5798319327731093, 'f1': 0.5564516129032259, 'number': 119} {'precision': 0.8910433979686058, 'recall': 0.8960074280408542, 'f1': 0.8935185185185185, 'number': 1077} 0.8498 0.8768 0.8631 0.8064
0.0069 42.1053 800 1.5258 {'precision': 0.8543352601156069, 'recall': 0.9045287637698899, 'f1': 0.8787158145065399, 'number': 817} {'precision': 0.5700934579439252, 'recall': 0.5126050420168067, 'f1': 0.5398230088495575, 'number': 119} {'precision': 0.8849315068493151, 'recall': 0.8997214484679665, 'f1': 0.8922651933701657, 'number': 1077} 0.8558 0.8788 0.8672 0.8003
0.0035 52.6316 1000 1.5538 {'precision': 0.86, 'recall': 0.8947368421052632, 'f1': 0.8770245950809838, 'number': 817} {'precision': 0.5737704918032787, 'recall': 0.5882352941176471, 'f1': 0.5809128630705394, 'number': 119} {'precision': 0.8893023255813953, 'recall': 0.8876508820798514, 'f1': 0.8884758364312269, 'number': 1077} 0.8583 0.8728 0.8655 0.8103
0.0025 63.1579 1200 1.4460 {'precision': 0.8547297297297297, 'recall': 0.9290085679314566, 'f1': 0.8903225806451612, 'number': 817} {'precision': 0.6483516483516484, 'recall': 0.4957983193277311, 'f1': 0.561904761904762, 'number': 119} {'precision': 0.8898916967509025, 'recall': 0.9155060352831941, 'f1': 0.9025171624713959, 'number': 1077} 0.8644 0.8962 0.88 0.8193
0.0014 73.6842 1400 1.5030 {'precision': 0.8910648714810282, 'recall': 0.8910648714810282, 'f1': 0.8910648714810282, 'number': 817} {'precision': 0.616822429906542, 'recall': 0.5546218487394958, 'f1': 0.5840707964601769, 'number': 119} {'precision': 0.8925022583559169, 'recall': 0.9173630454967502, 'f1': 0.9047619047619048, 'number': 1077} 0.8774 0.8852 0.8813 0.8247
0.0011 84.2105 1600 1.5379 {'precision': 0.8779342723004695, 'recall': 0.9155446756425949, 'f1': 0.8963451168364289, 'number': 817} {'precision': 0.6210526315789474, 'recall': 0.4957983193277311, 'f1': 0.5514018691588785, 'number': 119} {'precision': 0.9005424954792043, 'recall': 0.924791086350975, 'f1': 0.9125057260650481, 'number': 1077} 0.8782 0.8957 0.8869 0.8281
0.0005 94.7368 1800 1.5872 {'precision': 0.8630609896432682, 'recall': 0.9179926560587516, 'f1': 0.8896797153024911, 'number': 817} {'precision': 0.6333333333333333, 'recall': 0.4789915966386555, 'f1': 0.5454545454545454, 'number': 119} {'precision': 0.8955495004541326, 'recall': 0.9155060352831941, 'f1': 0.9054178145087237, 'number': 1077} 0.8704 0.8907 0.8804 0.8211
0.0004 105.2632 2000 1.5457 {'precision': 0.8758782201405152, 'recall': 0.9155446756425949, 'f1': 0.8952722920406941, 'number': 817} {'precision': 0.6703296703296703, 'recall': 0.5126050420168067, 'f1': 0.5809523809523809, 'number': 119} {'precision': 0.8824577025823687, 'recall': 0.9201485608170845, 'f1': 0.9009090909090909, 'number': 1077} 0.8704 0.8942 0.8821 0.8231
0.0002 115.7895 2200 1.5761 {'precision': 0.8802816901408451, 'recall': 0.9179926560587516, 'f1': 0.8987417615338527, 'number': 817} {'precision': 0.6630434782608695, 'recall': 0.5126050420168067, 'f1': 0.5781990521327014, 'number': 119} {'precision': 0.8940754039497307, 'recall': 0.924791086350975, 'f1': 0.9091738931994524, 'number': 1077} 0.8780 0.8977 0.8877 0.8271
0.0002 126.3158 2400 1.5778 {'precision': 0.8764705882352941, 'recall': 0.9118727050183598, 'f1': 0.8938212357528493, 'number': 817} {'precision': 0.6593406593406593, 'recall': 0.5042016806722689, 'f1': 0.5714285714285715, 'number': 119} {'precision': 0.8901890189018902, 'recall': 0.9182915506035283, 'f1': 0.9040219378427787, 'number': 1077} 0.8743 0.8912 0.8827 0.8242

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1