lilt-en-funsd-layoutlmv3
This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.6323
- Answer: {'precision': 0.8683901292596945, 'recall': 0.9045287637698899, 'f1': 0.8860911270983215, 'number': 817}
- Header: {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119}
- Question: {'precision': 0.90063233965673, 'recall': 0.9257195914577531, 'f1': 0.913003663003663, 'number': 1077}
- Overall Precision: 0.8725
- Overall Recall: 0.8942
- Overall F1: 0.8832
- Overall Accuracy: 0.8071
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|
0.4052 | 10.5263 | 200 | 1.0646 | {'precision': 0.8046709129511678, 'recall': 0.9277845777233782, 'f1': 0.861853325753269, 'number': 817} | {'precision': 0.5803571428571429, 'recall': 0.5462184873949579, 'f1': 0.5627705627705628, 'number': 119} | {'precision': 0.8797061524334252, 'recall': 0.8895078922934077, 'f1': 0.8845798707294553, 'number': 1077} | 0.8311 | 0.8847 | 0.8571 | 0.7850 |
0.0474 | 21.0526 | 400 | 1.2300 | {'precision': 0.8500590318772137, 'recall': 0.8812729498164015, 'f1': 0.8653846153846153, 'number': 817} | {'precision': 0.5454545454545454, 'recall': 0.6554621848739496, 'f1': 0.5954198473282444, 'number': 119} | {'precision': 0.8798908098271155, 'recall': 0.8978644382544104, 'f1': 0.8887867647058824, 'number': 1077} | 0.8449 | 0.8768 | 0.8606 | 0.8026 |
0.0127 | 31.5789 | 600 | 1.5767 | {'precision': 0.8359728506787331, 'recall': 0.9045287637698899, 'f1': 0.8689006466784246, 'number': 817} | {'precision': 0.5583333333333333, 'recall': 0.5630252100840336, 'f1': 0.5606694560669456, 'number': 119} | {'precision': 0.8940397350993378, 'recall': 0.8774373259052924, 'f1': 0.8856607310215557, 'number': 1077} | 0.8496 | 0.8698 | 0.8596 | 0.7835 |
0.0085 | 42.1053 | 800 | 1.3875 | {'precision': 0.833710407239819, 'recall': 0.9020807833537332, 'f1': 0.8665490887713109, 'number': 817} | {'precision': 0.6363636363636364, 'recall': 0.5294117647058824, 'f1': 0.5779816513761468, 'number': 119} | {'precision': 0.8825654923215899, 'recall': 0.9071494893221913, 'f1': 0.8946886446886446, 'number': 1077} | 0.8502 | 0.8828 | 0.8662 | 0.8072 |
0.0058 | 52.6316 | 1000 | 1.4794 | {'precision': 0.8272017837235228, 'recall': 0.9082007343941249, 'f1': 0.8658109684947491, 'number': 817} | {'precision': 0.5203252032520326, 'recall': 0.5378151260504201, 'f1': 0.5289256198347108, 'number': 119} | {'precision': 0.8829981718464351, 'recall': 0.8969359331476323, 'f1': 0.889912482726854, 'number': 1077} | 0.8382 | 0.8803 | 0.8587 | 0.7964 |
0.0038 | 63.1579 | 1200 | 1.5286 | {'precision': 0.8443935926773455, 'recall': 0.9033047735618115, 'f1': 0.872856298048492, 'number': 817} | {'precision': 0.625, 'recall': 0.5042016806722689, 'f1': 0.5581395348837209, 'number': 119} | {'precision': 0.8991674375578168, 'recall': 0.9025069637883009, 'f1': 0.9008341056533827, 'number': 1077} | 0.8630 | 0.8793 | 0.8711 | 0.8084 |
0.0023 | 73.6842 | 1400 | 1.6443 | {'precision': 0.8725146198830409, 'recall': 0.9130966952264382, 'f1': 0.8923444976076554, 'number': 817} | {'precision': 0.5, 'recall': 0.5210084033613446, 'f1': 0.5102880658436215, 'number': 119} | {'precision': 0.8906955736224029, 'recall': 0.9155060352831941, 'f1': 0.9029304029304029, 'number': 1077} | 0.8600 | 0.8912 | 0.8753 | 0.8054 |
0.0012 | 84.2105 | 1600 | 1.6379 | {'precision': 0.8404977375565611, 'recall': 0.9094247246022031, 'f1': 0.8736037624926513, 'number': 817} | {'precision': 0.6224489795918368, 'recall': 0.5126050420168067, 'f1': 0.5622119815668203, 'number': 119} | {'precision': 0.8944444444444445, 'recall': 0.8969359331476323, 'f1': 0.8956884561891516, 'number': 1077} | 0.8584 | 0.8793 | 0.8687 | 0.8008 |
0.0005 | 94.7368 | 1800 | 1.6798 | {'precision': 0.8450057405281286, 'recall': 0.9008567931456548, 'f1': 0.8720379146919431, 'number': 817} | {'precision': 0.6534653465346535, 'recall': 0.5546218487394958, 'f1': 0.6000000000000001, 'number': 119} | {'precision': 0.8886861313868614, 'recall': 0.904363974001857, 'f1': 0.8964565117349288, 'number': 1077} | 0.8588 | 0.8823 | 0.8704 | 0.7988 |
0.0004 | 105.2632 | 2000 | 1.6804 | {'precision': 0.8596491228070176, 'recall': 0.8996328029375765, 'f1': 0.8791866028708135, 'number': 817} | {'precision': 0.5203252032520326, 'recall': 0.5378151260504201, 'f1': 0.5289256198347108, 'number': 119} | {'precision': 0.8869801084990958, 'recall': 0.9108635097493036, 'f1': 0.8987631699496106, 'number': 1077} | 0.8541 | 0.8843 | 0.8689 | 0.8032 |
0.0003 | 115.7895 | 2200 | 1.6352 | {'precision': 0.8713105076741441, 'recall': 0.9033047735618115, 'f1': 0.8870192307692307, 'number': 817} | {'precision': 0.6153846153846154, 'recall': 0.5378151260504201, 'f1': 0.5739910313901345, 'number': 119} | {'precision': 0.8938848920863309, 'recall': 0.9229340761374187, 'f1': 0.9081772498857925, 'number': 1077} | 0.8706 | 0.8922 | 0.8813 | 0.8066 |
0.0002 | 126.3158 | 2400 | 1.6323 | {'precision': 0.8683901292596945, 'recall': 0.9045287637698899, 'f1': 0.8860911270983215, 'number': 817} | {'precision': 0.6095238095238096, 'recall': 0.5378151260504201, 'f1': 0.5714285714285715, 'number': 119} | {'precision': 0.90063233965673, 'recall': 0.9257195914577531, 'f1': 0.913003663003663, 'number': 1077} | 0.8725 | 0.8942 | 0.8832 | 0.8071 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1
- Downloads last month
- 46
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MSAMTB/lilt-en-funsd-layoutlmv3
Base model
SCUT-DLVCLab/lilt-roberta-en-base