|
--- |
|
language: |
|
- ko |
|
- en |
|
pipeline_tag: text-generation |
|
datasets: |
|
- DILAB-HYU/KoQuality |
|
--- |
|
### Model Card for Model ID |
|
base_model : [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) |
|
|
|
### Basic usage |
|
```python |
|
# pip install accelerate |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Meta-Llama-3.1-8B-it-v0.1") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
"MDDDDR/Meta-Llama-3.1-8B-it-v0.1", |
|
device_map="auto", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
|
|
input_text = "사과가 뭐야?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Training dataset |
|
- dataset_1 : [DILAB-HYU/KoQuality](https://huggingface.co./datasets/DILAB-HYU/KoQuality) |
|
|
|
### lora_config and bnb_config in Training |
|
```python |
|
bnd_config = BitsAndBytesConfig( |
|
load_in_4bit = True, |
|
bnb_4bit_use_double_quant = True, |
|
bnb_4bit_quant_type = 'nf4', |
|
bnb_4bit_compute_dtype = torch.bfloat16 |
|
) |
|
|
|
lora_config = LoraConfig( |
|
r = 8, |
|
lora_alpha = 8, |
|
lora_dropout = 0.05, |
|
target_modules = ['gate_proj', 'up_proj', 'down_proj'] |
|
) |
|
``` |
|
|
|
### Model evaluation |
|
| Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |
|
|----------------|------:|------|-----:|--------|---|-----:|---|------| |
|
|kobest_boolq | 1|none | 0|acc |↑ |0.5150|± |0.0133| |
|
| | |none | 0|f1 |↑ |0.3634|± | N/A| |
|
|kobest_copa | 1|none | 0|acc |↑ |0.6280|± |0.0153| |
|
| | |none | 0|f1 |↑ |0.6279|± | N/A| |
|
|kobest_hellaswag| 1|none | 0|acc |↑ |0.4280|± |0.0221| |
|
| | |none | 0|acc_norm|↑ |0.5540|± |0.0223| |
|
| | |none | 0|f1 |↑ |0.4250|± | N/A| |
|
|kobest_sentineg | 1|none | 0|acc |↑ |0.7406|± |0.0220| |
|
| | |none | 0|f1 |↑ |0.7317|± | N/A| |
|
|
|
### Hardware |
|
- RTX 3090 Ti 24GB x 1 |
|
- Training Time : 1 hours |