--- language: - ko - en pipeline_tag: text-generation datasets: - DILAB-HYU/KoQuality --- ### Model Card for Model ID base_model : [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co./meta-llama/Meta-Llama-3.1-8B-Instruct) ### Basic usage ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("MDDDDR/Meta-Llama-3.1-8B-it-v0.1") model = AutoModelForCausalLM.from_pretrained( "MDDDDR/Meta-Llama-3.1-8B-it-v0.1", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "사과가 뭐야?" input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Training dataset - dataset_1 : [DILAB-HYU/KoQuality](https://huggingface.co./datasets/DILAB-HYU/KoQuality) ### lora_config and bnb_config in Training ```python bnd_config = BitsAndBytesConfig( load_in_4bit = True, bnb_4bit_use_double_quant = True, bnb_4bit_quant_type = 'nf4', bnb_4bit_compute_dtype = torch.bfloat16 ) lora_config = LoraConfig( r = 8, lora_alpha = 8, lora_dropout = 0.05, target_modules = ['gate_proj', 'up_proj', 'down_proj'] ) ``` ### Model evaluation | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |----------------|------:|------|-----:|--------|---|-----:|---|------| |kobest_boolq | 1|none | 0|acc |↑ |0.5150|± |0.0133| | | |none | 0|f1 |↑ |0.3634|± | N/A| |kobest_copa | 1|none | 0|acc |↑ |0.6280|± |0.0153| | | |none | 0|f1 |↑ |0.6279|± | N/A| |kobest_hellaswag| 1|none | 0|acc |↑ |0.4280|± |0.0221| | | |none | 0|acc_norm|↑ |0.5540|± |0.0223| | | |none | 0|f1 |↑ |0.4250|± | N/A| |kobest_sentineg | 1|none | 0|acc |↑ |0.7406|± |0.0220| | | |none | 0|f1 |↑ |0.7317|± | N/A| ### Hardware - RTX 3090 Ti 24GB x 1 - Training Time : 1 hours