|
--- |
|
language: multilingual |
|
--- |
|
|
|
## Multilingual-clip: LABSE-Vit-L-14 |
|
|
|
Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model *only* contains the multilingual text encoder. The corresponding image model `ViT-L-14` can be retrieved via instructions found on OpenAI's [CLIP repository on Github](https://github.com/openai/CLIP). We provide a usage example below. |
|
|
|
## Requirements |
|
|
|
To use both the multilingual text encoder and corresponding image encoder, we need to install the packages [`multilingual-clip`](https://github.com/FreddeFrallan/Multilingual-CLIP) and [`clip`](https://github.com/openai/CLIP). |
|
|
|
``` |
|
pip install multilingual-clip |
|
pip install git+https://github.com/openai/CLIP.git |
|
``` |
|
|
|
## Usage |
|
|
|
Extracting embeddings from the text encoder can be done in the following way: |
|
|
|
```python |
|
from multilingual_clip import pt_multilingual_clip |
|
import transformers |
|
|
|
texts = [ |
|
'Three blind horses listening to Mozart.', |
|
'Älgen är skogens konung!', |
|
'Wie leben Eisbären in der Antarktis?', |
|
'Вы знали, что все белые медведи левши?' |
|
] |
|
model_name = 'M-CLIP/LABSE-Vit-L-14' |
|
|
|
# Load Model & Tokenizer |
|
model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name) |
|
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) |
|
|
|
embeddings = model.forward(texts, tokenizer) |
|
print("Text features shape:", embeddings.shape) |
|
``` |
|
|
|
Extracting embeddings from the corresponding image encoder: |
|
|
|
```python |
|
import torch |
|
import clip |
|
import requests |
|
from PIL import Image |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model, preprocess = clip.load("ViT-L/14", device=device) |
|
|
|
url = "http://images.cocodataset.org/val2017/000000039769.jpg" |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
image = preprocess(image).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
image_features = model.encode_image(image) |
|
|
|
print("Image features shape:", image_features.shape) |
|
``` |
|
|
|
## Evaluation results |
|
|
|
None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results: |
|
|
|
| Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp | |
|
| ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: | |
|
| [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - | |
|
| [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - | |
|
| [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - | |
|
| [LABSE Vit-L/14](https://huggingface.co./M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 | |
|
| [XLM-R Large Vit-B/32](https://huggingface.co./M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 | |
|
| [XLM-R Vit-L/14](https://huggingface.co./M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 | |
|
| [XLM-R Large Vit-B/16+](https://huggingface.co./M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| **95.0** | **93.0** | **93.6** | **93.1** | **94.0** | **93.1** | **94.4** | **89.0** | **90.0** | **93.0** | **84.2** | |
|
|
|
|
|
## Training/Model details |
|
|
|
Further details about the model training and data can be found in the [model card](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/larger_mclip.md). |