Lauler commited on
Commit
f030546
1 Parent(s): caa11f9

Add readme

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: multilingual
3
+ ---
4
+
5
+ ## Multilingual-clip: LABSE-Vit-L-14
6
+
7
+ Multilingual-CLIP extends OpenAI's English text encoders to multiple other languages. This model *only* contains the multilingual text encoder. The corresponding image model `ViT-L-14` can be retrieved via instructions found on OpenAI's [CLIP repository on Github](https://github.com/openai/CLIP). We provide a usage example below.
8
+
9
+ ## Requirements
10
+
11
+ To use both the multilingual text encoder and corresponding image encoder, we need to install the packages [`multilingual-clip`](https://github.com/FreddeFrallan/Multilingual-CLIP) and [`clip`](https://github.com/openai/CLIP).
12
+
13
+ ```
14
+ pip install multilingual-clip
15
+ pip install git+https://github.com/openai/CLIP.git
16
+ ```
17
+
18
+ ## Usage
19
+
20
+ Extracting embeddings from the text encoder can be done in the following way:
21
+
22
+ ```python
23
+ from multilingual_clip import pt_multilingual_clip
24
+ import transformers
25
+
26
+ texts = [
27
+ 'Three blind horses listening to Mozart.',
28
+ 'Älgen är skogens konung!',
29
+ 'Wie leben Eisbären in der Antarktis?',
30
+ 'Вы знали, что все белые медведи левши?'
31
+ ]
32
+ model_name = 'M-CLIP/LABSE-Vit-L-14'
33
+
34
+ # Load Model & Tokenizer
35
+ model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
36
+ tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
37
+
38
+ embeddings = model.forward(texts, tokenizer)
39
+ print("Text features shape:", embeddings.shape)
40
+ ```
41
+
42
+ Extracting embeddings from the corresponding image encoder:
43
+
44
+ ```python
45
+ import torch
46
+ import clip
47
+ import requests
48
+ from PIL import Image
49
+
50
+ device = "cuda" if torch.cuda.is_available() else "cpu"
51
+ model, preprocess = clip.load("ViT-L/14", device=device)
52
+
53
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
54
+ image = Image.open(requests.get(url, stream=True).raw)
55
+ image = preprocess(image).unsqueeze(0).to(device)
56
+
57
+ with torch.no_grad():
58
+ image_features = model.encode_image(image)
59
+
60
+ print("Image features shape:", image_features.shape)
61
+ ```
62
+
63
+ ## Evaluation results
64
+
65
+ None of the M-CLIP models have been extensivly evaluated, but testing them on Txt2Img retrieval on the humanly translated MS-COCO dataset, we see the following **R@10** results:
66
+
67
+ | Name | En | De | Es | Fr | Zh | It | Pl | Ko | Ru | Tr | Jp |
68
+ | ----------------------------------|:-----: |:-----: |:-----: |:-----: | :-----: |:-----: |:-----: |:-----: |:-----: |:-----: |:-----: |
69
+ | [OpenAI CLIP Vit-B/32](https://github.com/openai/CLIP)| 90.3 | - | - | - | - | - | - | - | - | - | - |
70
+ | [OpenAI CLIP Vit-L/14](https://github.com/openai/CLIP)| 91.8 | - | - | - | - | - | - | - | - | - | - |
71
+ | [OpenCLIP ViT-B-16+-](https://github.com/openai/CLIP)| 94.3 | - | - | - | - | - | - | - | - | - | - |
72
+ | [LABSE Vit-L/14](https://huggingface.co/M-CLIP/LABSE-Vit-L-14)| 91.6 | 89.6 | 89.5 | 89.9 | 88.9 | 90.1 | 89.8 | 80.8 | 85.5 | 89.8 | 73.9 |
73
+ | [XLM-R Large Vit-B/32](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-32)| 91.8 | 88.7 | 89.1 | 89.4 | 89.3 | 89.8| 91.4 | 82.1 | 86.1 | 88.8 | 81.0 |
74
+ | [XLM-R Vit-L/14](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-L-14)| 92.4 | 90.6 | 91.0 | 90.0 | 89.7 | 91.1 | 91.3 | 85.2 | 85.8 | 90.3 | 81.9 |
75
+ | [XLM-R Large Vit-B/16+](https://huggingface.co/M-CLIP/XLM-Roberta-Large-Vit-B-16Plus)| **95.0** | **93.0** | **93.6** | **93.1** | **94.0** | **93.1** | **94.4** | **89.0** | **90.0** | **93.0** | **84.2** |
76
+
77
+
78
+ ## Training/Model details
79
+
80
+ Further details about the model training and data can be found in the [model card](https://github.com/FreddeFrallan/Multilingual-CLIP/blob/main/larger_mclip.md).