|
--- |
|
license: apache-2.0 |
|
base_model: distilbert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilBERT_gptdata_with_preprocessing_grid_search |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilBERT_gptdata_with_preprocessing_grid_search |
|
|
|
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2808 |
|
- Precision: 0.9608 |
|
- Recall: 0.9612 |
|
- F1: 0.9607 |
|
- Accuracy: 0.9606 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 450 | 0.2169 | 0.9437 | 0.9445 | 0.9432 | 0.9433 | |
|
| 0.4523 | 2.0 | 900 | 0.1979 | 0.9486 | 0.9486 | 0.9479 | 0.9478 | |
|
| 0.109 | 3.0 | 1350 | 0.2404 | 0.9545 | 0.9539 | 0.9533 | 0.9533 | |
|
| 0.0659 | 4.0 | 1800 | 0.2330 | 0.9559 | 0.9555 | 0.9550 | 0.955 | |
|
| 0.0301 | 5.0 | 2250 | 0.2434 | 0.9580 | 0.9583 | 0.9580 | 0.9578 | |
|
| 0.0201 | 6.0 | 2700 | 0.2462 | 0.9572 | 0.9569 | 0.9570 | 0.9567 | |
|
| 0.0089 | 7.0 | 3150 | 0.2618 | 0.9581 | 0.9585 | 0.9581 | 0.9578 | |
|
| 0.0074 | 8.0 | 3600 | 0.2717 | 0.9616 | 0.9618 | 0.9612 | 0.9611 | |
|
| 0.0025 | 9.0 | 4050 | 0.2805 | 0.9597 | 0.9601 | 0.9596 | 0.9594 | |
|
| 0.0014 | 10.0 | 4500 | 0.2808 | 0.9608 | 0.9612 | 0.9607 | 0.9606 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|