File size: 2,433 Bytes
4fa9a7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48737a6
 
 
 
 
4fa9a7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48737a6
4fa9a7f
 
 
 
 
 
 
 
 
 
 
48737a6
 
 
 
 
 
 
 
 
 
4fa9a7f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilBERT_gptdata_with_preprocessing_grid_search
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilBERT_gptdata_with_preprocessing_grid_search

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co./distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2808
- Precision: 0.9608
- Recall: 0.9612
- F1: 0.9607
- Accuracy: 0.9606

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 450  | 0.2169          | 0.9437    | 0.9445 | 0.9432 | 0.9433   |
| 0.4523        | 2.0   | 900  | 0.1979          | 0.9486    | 0.9486 | 0.9479 | 0.9478   |
| 0.109         | 3.0   | 1350 | 0.2404          | 0.9545    | 0.9539 | 0.9533 | 0.9533   |
| 0.0659        | 4.0   | 1800 | 0.2330          | 0.9559    | 0.9555 | 0.9550 | 0.955    |
| 0.0301        | 5.0   | 2250 | 0.2434          | 0.9580    | 0.9583 | 0.9580 | 0.9578   |
| 0.0201        | 6.0   | 2700 | 0.2462          | 0.9572    | 0.9569 | 0.9570 | 0.9567   |
| 0.0089        | 7.0   | 3150 | 0.2618          | 0.9581    | 0.9585 | 0.9581 | 0.9578   |
| 0.0074        | 8.0   | 3600 | 0.2717          | 0.9616    | 0.9618 | 0.9612 | 0.9611   |
| 0.0025        | 9.0   | 4050 | 0.2805          | 0.9597    | 0.9601 | 0.9596 | 0.9594   |
| 0.0014        | 10.0  | 4500 | 0.2808          | 0.9608    | 0.9612 | 0.9607 | 0.9606   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3