LovenOO commited on
Commit
4fa9a7f
1 Parent(s): 6de73ec

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -0
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: distilBERT_gptdata_with_preprocessing_grid_search
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # distilBERT_gptdata_with_preprocessing_grid_search
20
+
21
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.3040
24
+ - Precision: 0.9588
25
+ - Recall: 0.9588
26
+ - F1: 0.9585
27
+ - Accuracy: 0.9583
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 10
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | No log | 1.0 | 450 | 0.2178 | 0.9434 | 0.9437 | 0.9426 | 0.9428 |
59
+ | 0.3833 | 2.0 | 900 | 0.2535 | 0.9449 | 0.9435 | 0.9424 | 0.9422 |
60
+ | 0.1094 | 3.0 | 1350 | 0.2235 | 0.9551 | 0.9551 | 0.9548 | 0.9544 |
61
+ | 0.0692 | 4.0 | 1800 | 0.2818 | 0.9545 | 0.9540 | 0.9534 | 0.9533 |
62
+ | 0.0299 | 5.0 | 2250 | 0.2676 | 0.9569 | 0.9559 | 0.9562 | 0.9556 |
63
+ | 0.019 | 6.0 | 2700 | 0.2761 | 0.9586 | 0.9584 | 0.9580 | 0.9578 |
64
+ | 0.0074 | 7.0 | 3150 | 0.2832 | 0.9589 | 0.9590 | 0.9587 | 0.9583 |
65
+ | 0.0063 | 8.0 | 3600 | 0.3009 | 0.9585 | 0.9583 | 0.9579 | 0.9578 |
66
+ | 0.0029 | 9.0 | 4050 | 0.2968 | 0.9610 | 0.9610 | 0.9607 | 0.9606 |
67
+ | 0.0013 | 10.0 | 4500 | 0.3040 | 0.9588 | 0.9588 | 0.9585 | 0.9583 |
68
+
69
+
70
+ ### Framework versions
71
+
72
+ - Transformers 4.31.0
73
+ - Pytorch 2.0.1+cu118
74
+ - Datasets 2.14.4
75
+ - Tokenizers 0.13.3