update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: distilBERT_gptdata_with_preprocessing_grid_search
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# distilBERT_gptdata_with_preprocessing_grid_search
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3040
|
24 |
+
- Precision: 0.9588
|
25 |
+
- Recall: 0.9588
|
26 |
+
- F1: 0.9585
|
27 |
+
- Accuracy: 0.9583
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 16
|
48 |
+
- eval_batch_size: 16
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 450 | 0.2178 | 0.9434 | 0.9437 | 0.9426 | 0.9428 |
|
59 |
+
| 0.3833 | 2.0 | 900 | 0.2535 | 0.9449 | 0.9435 | 0.9424 | 0.9422 |
|
60 |
+
| 0.1094 | 3.0 | 1350 | 0.2235 | 0.9551 | 0.9551 | 0.9548 | 0.9544 |
|
61 |
+
| 0.0692 | 4.0 | 1800 | 0.2818 | 0.9545 | 0.9540 | 0.9534 | 0.9533 |
|
62 |
+
| 0.0299 | 5.0 | 2250 | 0.2676 | 0.9569 | 0.9559 | 0.9562 | 0.9556 |
|
63 |
+
| 0.019 | 6.0 | 2700 | 0.2761 | 0.9586 | 0.9584 | 0.9580 | 0.9578 |
|
64 |
+
| 0.0074 | 7.0 | 3150 | 0.2832 | 0.9589 | 0.9590 | 0.9587 | 0.9583 |
|
65 |
+
| 0.0063 | 8.0 | 3600 | 0.3009 | 0.9585 | 0.9583 | 0.9579 | 0.9578 |
|
66 |
+
| 0.0029 | 9.0 | 4050 | 0.2968 | 0.9610 | 0.9610 | 0.9607 | 0.9606 |
|
67 |
+
| 0.0013 | 10.0 | 4500 | 0.3040 | 0.9588 | 0.9588 | 0.9585 | 0.9583 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.31.0
|
73 |
+
- Pytorch 2.0.1+cu118
|
74 |
+
- Datasets 2.14.4
|
75 |
+
- Tokenizers 0.13.3
|